
Bypassing BDD Construtionfor Reliability AnalysisPoul Frederik Williams a, Maha Nikolska��a b andAntoine Rauzy baDepartment of Information Tehnology, Tehnial University of Denmark,Lyngby, Denmark, e-mail pfw�it.dtu.dkbLaboratoire Bordelais de Reherhe en Informatique, CNRS/Universit�eBordeaux-1, Bordeaux, Frane, e-mail fmaha,rauzyg�LaBRI.U-Bordeaux.FRKey words: Boolean formula. Data strutures. Reliability analysis.1 IntrodutionIn this note, we propose a Binary Expression Diagram (BED [1℄)-based al-gorithm to ompute the minimal p-uts of boolean reliability models suhas fault trees. BED make it possible to bypass the Binary Deision Diagram(BDD [2℄) onstrution, whih is the main ost of fault tree assessment.We onsider boolean formulas built over a set of variables X = fx1; : : : ; xng,the two onstants 0; 1 2 B and the usual operators + (or), : (and), � (not),x ! y; z (if-then-else) et. A literal is either a variable x or its negation �x. Aprodut is a set of literals that does not ontain a literal and its negation. Aprodut is assimilated with the onjuntion of its elements. A minterm overX is a produt that ontains either positively or negatively all variables of X.Let f be a formula and � be a produt that ontains only positive literals.We denote by �X the minterm obtained by adding to � the negative literalsformed over all of the variables ourring in f but not in �. � is a p-ut of fif �X j= f . It is minimal if there is no produt Æ � � suh that ÆX j= f . Wedenote by �(f) the set of the minimal p-uts of the formula f and �k(f) theset of the minimal p-uts with less than k literals.Two deomposition theorems [4℄ allow the design of algorithms to omputethe ZBDD [6℄ that enodes �k(f) from the BDD that enodes f . Indeed,omputing the former requires omputing the latter. However, only part ofthe BDD is used, sine some of the produts it enodes are useless to thePreprint submitted to Elsevier Preprint 6 June 1999



omputation of �k(f) [5℄. We show that BEDs make it possible to omputeonly relevant parts of the BDD, therefore avoiding a potential exponentialblow-up.The remainder of this note is organized as follows. The next setion introduesminimal p-uts. Setion 3 briey reviews the BED data struture. Setion 4introdues an extension to BEDs to failitate fault tree analysis. Setion 5gives pratial results, and �nally, setion 6 draws onlusions.2 Minimal P-CutsMinimal p-uts play a entral role in the assessment of fault trees. Booleanformulas desribe the potential failures of the system under study, variablesrepresent omponent failures. Minimal p-uts represent minimal sets of om-ponent failures that indue a failure of the whole system. This notion shouldbe preferred to the lassial notion of prime impliants that also aptures theidea of minimal solutions [4,5℄. Minimal p-uts approximate prime impliantsby onsidering only positive parts of impliants, and k-trunated minimal p-uts restrit the result to those of size at most k. The latter is of pratialimportane in qualitative analysis of fault trees, as it identi�es sets of ompo-nent with high probability of simultaneous failure that would ause the entiresystem to fail. There do not exist eÆient (i.e. polynomial) algorithms to om-pute short prime impliants [3℄, while suh algorithms do exist for minimalp-uts [5℄ and are illustrated here. These algorithms are based on the followingtheorems. The �rst one establishes that minterms with more than k positiveliterals are useless for omputing �k(f). The seond theorem gives a reursivepriniple for omputing �k(f) from the Shannon deomposition of f .Theorem 1 (Dutuit & Rauzy [5℄) Let f be a boolean formula over the setof variables X and k be a integer, then the following equality holds:�k(f) = �1(F \minterms+k (X));where minterms+k (X) denotes the minterms built over X that ontain lessthan k positive literals and f is viewed as the set of minterms that satisfy it.Theorem 2 (Dutuit & Rauzy [4℄) Let F = x:f1 + �x:f0 be a boolean for-mula with f1 and f0 not depending on x. Then, �k(f) an be obtained as theunion of two sets �k(f) = v:�1[�0 where �0 = �k(f0), �1 = �k�1(f1+f0)n�0, v:P = fv:�; � 2 Pg and n denotes set di�erene.We will exploit this fat not only to ompute �k(f) inrementally, but toexpand the formula f into an OBDD inrementally. This is possible using theBED data struture [1℄. 2



3 Boolean Expression DiagramsDe�nition 3 Let X be a set of boolean variables, and let OP be a set ofbinary boolean operators. A BED over X and OP is a labelled ordered DAGB = hV;E; li where V is a set of verties, E � V � V a set of edges, l : V !B [OP [X is a labelling funtion satisfying:(i) l(v) 2 B ) �(v) = 0,(ii) l(v) 62 B ) �(v) = 2, where � : V ! N gives the arity of a vertex.De�nition 4 The denotation of a vertex of a BED over a set of variables Xand a set of operators OP is a boolean funtion from ~x = x1; : : : xjXj ! Bde�ned by D as follows.D[[0℄℄ = �~x:0D[[1℄℄ = �~x:1D[[� [v1; v0℄℄℄ = �~x(D[[v1℄℄ � D[[v0℄℄); 8 � 2 OPD[[x[v1; v0℄℄℄ = �~x(x! D[[v1℄℄;D[[v0℄℄)The basi step of onversion of a BED into a BDD is the up transformation.De�nition 5 The up transformation is de�ned by:� ((x! f1; f2); (x! f 01; f 02)) up x=) x! (�f1; f 01); (�f2; f 02) :If one of the argument verties of � is not labelled by x but by anothervariable y, then a new vertex labelled by x is reated : x[y; y℄. We all up-one the repeated appliation of up transformation to one variable x until it ismoved up to the top of the BED struture. Simultaneous appliation of up-one to all variables x1; : : : ; xn is alled up-all and orresponds to the standardBDD onstrution.4 Minimal P-Cuts with BEDsIt is lear that minimal p-uts an be omputed using BEDs, sine it is suf-�ient to onvert the BED for f to a BDD using up-all, then to apply thestandard algorithm from [4℄. The disadvantage is that we onstrut the entireBDD for the f , when only part of this information is neessary for omputingthe p-uts (theorem 1). The up transformation gives us �ner ontrol over theonversion of the BED to an BDD. We will show that minimal p-uts an be3



omputed by a bottom-up expansion of the formula that only onverts whatis neessary for the omputation. The resulting algorithm does stritly less,and often signi�antly less, work than the standard algorithm.We extend the BED data struture with a new kind of unary operator node,PC, whih marks the frontier between a boolean formula and its p-uts. Nodesabove this frontier represent the BDD enoding the p-uts for the formula f asthe disjuntion of the minterms �X , where � is a k-trunated minimal p-ut off . In eah step of the new algorithm, the up transformation lifts the smallestvariable in an order L over any boolean operators or other variable nodes,until it reahes a PC operator. The extended up transformation that is basedon theorem 2 is shown in the �gure 1. PC has two attributes: an ordered listL of the variables ourring in the formula f under study and the trunationsize k (noted between brakets).PC(0)[k;L℄ up x=) 0PC(1)[k; "℄ up x=) 1PC(1)[k; x:L℄ up x=) �x:PC(1)[k;L℄PC(x! f; g)[0; x:L℄ up x=) �x:PC(g)[0;L℄PC(x! f; g)[k; x:L℄ up x=) x! S; T (k > 0)T = PC(f)[k;L℄S = PC(f + g)[k � 1;L℄: �TPC(x! f; g)[k; y:L℄ up x=) �y:PC(x! f; g)[k;L℄ (y < x)Fig. 1. P-ut omputation using up transformationTo alulate the minimal trunated p-uts we use either up-all (orrespondingto standard algorithm) or up-one. Figure 2 shows how the PC operators \drive"the omputation, pulling BED variables up to the frontier. The proess isstarted by seeding a PC operator at the root of the original formula. As longas there are variable nodes below a PC operator, we pull them up one by onein the order L, until either no variables remain or the PC nodes in the frontierexhaust their apaity (k = 0).Proposition 6 The number of BDD nodes reated to enode the k-trunatedp-uts is bounded by O(nk).The proof is lear beause the number of minterms �X , where � is a k-trunated p-ut, is equal to Pki=0 �ni� = O(nk).4



P

PC PC PC PC

xnx0 x2

P

F

PC

x0 xnx1 x2 x3

F

up x1, up x3 up∗

Fig. 2. Computation of p-uts5 Pratial ResultsWe test our method experimentally on three fault trees, namely ea9601,das9601, and wes9701. They are from CEA (Frenh Military), Dassault Avi-ation (Frenh aviation ompany), and Westinghouse (Amerian nulear indus-try), respetively. All our experiments are run on a 500 MHz Digital Alpha.Table 1 shows the number of p-uts of order 1, 2, and 3 for the three faulttrees as well as the runtimes in seonds to �nd a BDD representation for thep-uts using up-one. For these alulations, the size of the BED data struturenever exeeded 20 MB of memory.No. of p-uts Runtime [se℄Name 1 2 3 4 1 2 3 4ea9601 0 0 1144 2024 2 27 122 683das9601 0 47 80 446 1 2 11 75wes9701 2 211 1079 54436 6 26 151 2000Table 1Number of p-uts of order 1, 2, 3 and 4, and running times in seonds to omputethem using up-one transformationThese results should be ompared with the standard method (the up-all algo-rithm), whih is unable to alulate the p-uts for ea9601 and wes9701. Fordas9601 it sueeds in building the BDD for the fault tree in about 2 hours.The variable orderings used in the experiments are the ones given in the anony-mous data �les. The standard method depends on the variable ordering, andusing improved heuristis to determine a good initial variable ordering willde�nitely improve the performane. However, the up-one method will alsobene�t from the use of an improved variable ordering heuristi.5



6 ConlusionIn this note we proposed a new method to ompute minimal trunated p-uts.The method uses the Boolean Expression Diagram data struture insteadof the standard Binary Deision Diagram data struture to represent faulttrees. By inluding a new operator in the Boolean Expression Diagram datastruture, it is possible to ompute minimal truntated p-uts diretly from theBoolean Expression Diagram without ever onstruting the Binary DeisionDiagram representation of the fault tree (that is often of gigabyte size).We have shown experimental results for three industrial problems and om-pared them to the standard method. The results show that our method hasan advantage over the Binary Deision Diagram methods.AknowledgementsThanks to David James Sherman of Universit�e Bordeaux-I for giving onstru-tive ritiism on drafts of this paper.Referenes[1℄ H.R. Andersen and H. Hulgaard. Boolean Expression Diagrams. In IEEESymposium on Logi in Computer Siene (LICS), July 1997.[2℄ R. Bryant. Graph Based Algorithms for Boolean Funtion Manipulation. IEEETransations on Computers, 35(8):677{691, August 1986.[3℄ O. Coudert and J.-C. Madre. Fault Tree Analysis: 1020 Prime Impliants andBeyond. In Proeedings of the Annual Reliability and Maintainability Symposium,ARMS'93, January 1993. Atlanta NC, USA.[4℄ Y. Dutuit and A. Rauzy. Exat and Trunated Computations of Prime Impliantsof Coherent and non-Coherent Fault Trees within Aralia. Reliability Engineeringand System Safety, 58:127{144, 1997.[5℄ Y. Dutuit and A. Rauzy. Polynomial Approximations of Boolean Funtionsby Means of Positive Binary Deision Diagrams. In Lydersen, Hansen, andSandtorv, editors, Proeedings of European Safety and Reliability AssoiationConferene, ESREL'98, pages 1467{1472. Balkerna, Rotterdam, 1998. ISBN 9054 10 966 1.[6℄ S. Minato. Zero-Suppressed BDDs for Set Manipulation in CombinatorialProblems. In Proeedings of the 30th ACM/IEEE Design AutomationConferene, DAC'93, pages 272{277, 1993.6


