Bypassing BDD Construction
for Reliability Analysis

Poul Frederick Williams #, Macha Nikolskaia and
Antoine Rauzy "

aDepartment of Information Technology, Technical University of Denmark,
Lyngby, Denmark, e-mail pfw@it.dtu.dk

b Laboratoire Bordelais de Recherche en Informatique, CNRS/Université
Bordeauz-1, Bordeauz, France, e-mail {macha,rauzy}@LaBRI.U-Bordeauz.FR

Key words: Boolean formula. Data structures. Reliability analysis.

1 Introduction

In this note, we propose a Binary Expression Diagram (BED [1])-based al-
gorithm to compute the minimal p-cuts of boolean reliability models such
as fault trees. BED make it possible to bypass the Binary Decision Diagram
(BDD [2]) construction, which is the main cost of fault tree assessment.

We consider boolean formulas built over a set of variables X = {zy, ..., z,},
the two constants 0,1 € B and the usual operators + (or), . (and), ~ (not),
x — y, z (if-then-else) etc. A literal is either a variable x or its negation z. A
product is a set of literals that does not contain a literal and its negation. A
product is assimilated with the conjunction of its elements. A minterm over
X is a product that contains either positively or negatively all variables of X.

Let f be a formula and 7 be a product that contains only positive literals.
We denote by 7§ the minterm obtained by adding to 7 the negative literals
formed over all of the variables occurring in f but not in 7. 7 is a p-cut of f
if 75 = f. It is minimal if there is no product § C 7 such that 65 | f. We
denote by II(f) the set of the minimal p-cuts of the formula f and II.(f) the
set, of the minimal p-cuts with less than £ literals.

Two decomposition theorems [4] allow the design of algorithms to compute
the ZBDD [6] that encodes IIx(f) from the BDD that encodes f. Indeed,
computing the former requires computing the latter. However, only part of
the BDD is used, since some of the products it encodes are useless to the

Preprint submitted to Elsevier Preprint 6 June 1999

computation of IT;(f) [5]. We show that BEDs make it possible to compute
only relevant parts of the BDD, therefore avoiding a potential exponential
blow-up.

The remainder of this note is organized as follows. The next section introduces
minimal p-cuts. Section 3 briefly reviews the BED data structure. Section 4
introduces an extension to BEDs to facilitate fault tree analysis. Section 5
gives practical results, and finally, section 6 draws conclusions.

2 Minimal P-Cuts

Minimal p-cuts play a central role in the assessment of fault trees. Boolean
formulas describe the potential failures of the system under study, variables
represent component failures. Minimal p-cuts represent minimal sets of com-
ponent failures that induce a failure of the whole system. This notion should
be preferred to the classical notion of prime implicants that also captures the
idea of minimal solutions [4,5]. Minimal p-cuts approximate prime implicants
by considering only positive parts of implicants, and k-truncated minimal p-
cuts restrict the result to those of size at most k. The latter is of practical
importance in qualitative analysis of fault trees, as it identifies sets of compo-
nent with high probability of simultaneous failure that would cause the entire
system to fail. There do not exist efficient (i.e. polynomial) algorithms to com-
pute short prime implicants [3], while such algorithms do exist for minimal
p-cuts [5] and are illustrated here. These algorithms are based on the following
theorems. The first one establishes that minterms with more than k& positive
literals are useless for computing IT;(f). The second theorem gives a recursive
principle for computing I (f) from the Shannon decomposition of f.

Theorem 1 (Dutuit & Rauzy [5]) Let f be a boolean formula over the set
of variables X and k be a integer, then the following equality holds:

I1;,(f) = o (F N minterms} (X)),

where minterms; (X) denotes the minterms built over X that contain less

than k positive literals and f is viewed as the set of minterms that satisfy it.

Theorem 2 (Dutuit & Rauzy [4]) Let F = z.f; + T.fy be a boolean for-
mula with fi and fy not depending on x. Then, I1(f) can be obtained as the
union of two sets g (f) = v.11; UIly where Iy = g (fo), II1 = M—1(f1 + fo) \
[y, v.P = {v.m;m € P} and \ denotes set difference.

We will exploit this fact not only to compute II(f) incrementally, but to
expand the formula f into an OBDD incrementally. This is possible using the
BED data structure [1].

3 Boolean Expression Diagrams

Definition 3 Let X be a set of boolean variables, and let OP be a set of
binary boolean operators. A BED over X and OP is a labelled ordered DAG
B = (V,E,l) whereV is a set of vertices, E C'V xV a set of edges, | : V —
BU OPUX is a labelling function satisfying:

(i) (v) €B = p(v)
(i) 1(v) € B = p(v) =
Definition 4 The denotation of a vertex of a BED over a set of variables X

and a set of operators OP is a boolean function from T = z,...zx) — B
defined by D as follows.

0,
where p 1 V' — N gives the arity of a verter.
2,

D[0] = A\Z.0
D[[1] = A\#.1
D[® [v1, w]] = AZ(D[vi] © Dw]), ¥ © € OP
Dl[z[v1, vo] = AZ(z — D[[v1], Dl[vo])

The basic step of conversion of a BED into a BDD is the up transformation.

Definition 5 The up transformation is defined by:

© ((x_>f17f2)7(x_>f{7fé)) % r— (®f17f{)7(®f2afé) :

If one of the argument vertices of ® is not labelled by x but by another
variable y, then a new vertex labelled by z is created : z[y,y]. We call up-
one the repeated application of up transformation to one variable z until it is
moved up to the top of the BED structure. Simultaneous application of up-
one to all variables x4, ... , x, is called up-all and corresponds to the standard
BDD construction.

4 Minimal P-Cuts with BEDs

It is clear that minimal p-cuts can be computed using BEDs, since it is suf-
ficient to convert the BED for f to a BDD using up-all, then to apply the
standard algorithm from [4]. The disadvantage is that we construct the entire
BDD for the f, when only part of this information is necessary for computing
the p-cuts (theorem 1). The up transformation gives us finer control over the
conversion of the BED to an BDD. We will show that minimal p-cuts can be

computed by a bottom-up expansion of the formula that only converts what
is necessary for the computation. The resulting algorithm does strictly less,
and often significantly less, work than the standard algorithm.

We extend the BED data structure with a new kind of unary operator node,
PC, which marks the frontier between a boolean formula and its p-cuts. Nodes
above this frontier represent the BDD encoding the p-cuts for the formula f as
the disjunction of the minterms 7§, where 7 is a k-truncated minimal p-cut of
f. In each step of the new algorithm, the up transformation lifts the smallest
variable in an order L over any boolean operators or other variable nodes,
until it reaches a PC operator. The extended up transformation that is based
on theorem 2 is shown in the figure 1. PC has two attributes: an ordered list
L of the variables occurring in the formula f under study and the truncation
size k (noted between brackets).

PC(0)[k; L] =20

PC(1)[k; €] £L 1

PC(1)[k; x.L] =L 2.pC(1)[k; L]

PC(z — f,9)[0;2.L] Z= 7.PC(g)[0; L]

PC(z — f,9)[k;0.l] & 2 — ST (k> 0)
T =Pc(f)[k; L]
S=PC(f +g)k—1;L].T

PC(x = f,9)[k;y.L] &= §.PC(x — f,g)[k; L] (y < =)

Fig. 1. P-cut computation using up transformation

To calculate the minimal truncated p-cuts we use either up-all (corresponding
to standard algorithm) or up-one. Figure 2 shows how the PC operators “drive”
the computation, pulling BED variables up to the frontier. The process is
started by seeding a PC operator at the root of the original formula. As long
as there are variable nodes below a PC operator, we pull them up one by one
in the order L, until either no variables remain or the PC nodes in the frontier
exhaust their capacity (k = 0).

Proposition 6 The number of BDD nodes created to encode the k-truncated
p-cuts is bounded by O(nF).

The proof is clear because the number of minterms 75, where 7 is a k-
truncated p-cut, is equal to Y%, <Tzl> = O(nk).

up X, Up Xg upO

—_— —_—

PC PC PC PC

DX XX X X % Xa

Fig. 2. Computation of p-cuts

5 Practical Results

We test our method experimentally on three fault trees, namely cea9601,
das9601, and wes9701. They are from CEA (French Military), Dassault Avi-
ation (French aviation company), and Westinghouse (American nuclear indus-
try), respectively. All our experiments are run on a 500 MHz Digital Alpha.

Table 1 shows the number of p-cuts of order 1, 2, and 3 for the three fault
trees as well as the runtimes in seconds to find a BDD representation for the
p-cuts using up-one. For these calculations, the size of the BED data structure
never exceeded 20 MB of memory.

No. of p-cuts Runtime [sec]

Name 1 2 3 41011 2 3 4

cea9601 | O 01144 | 2024 || 2 | 27 | 122 | 683
das9601 | 0 | 47 80 446 |11] 2| 11 75
wes9701 | 2 | 211 | 1079 | 54436 || 6 | 26 | 151 | 2000

Table 1
Number of p-cuts of order 1, 2, 3 and 4, and running times in seconds to compute
them using up-one transformation

These results should be compared with the standard method (the up-all algo-
rithm), which is unable to calculate the p-cuts for cea9601 and wes9701. For
das9601 it succeeds in building the BDD for the fault tree in about 2 hours.
The variable orderings used in the experiments are the ones given in the anony-
mous data files. The standard method depends on the variable ordering, and
using improved heuristics to determine a good initial variable ordering will
definitely improve the performance. However, the up-one method will also
benefit from the use of an improved variable ordering heuristic.

6 Conclusion

In this note we proposed a new method to compute minimal truncated p-cuts.
The method uses the Boolean Expression Diagram data structure instead
of the standard Binary Decision Diagram data structure to represent fault
trees. By including a new operator in the Boolean Expression Diagram data
structure, it is possible to compute minimal trunctated p-cuts directly from the
Boolean Expression Diagram without ever constructing the Binary Decision
Diagram representation of the fault tree (that is often of gigabyte size).

We have shown experimental results for three industrial problems and com-
pared them to the standard method. The results show that our method has
an advantage over the Binary Decision Diagram methods.

Acknowledgements

Thanks to David James Sherman of Université Bordeaux-I for giving construc-
tive criticism on drafts of this paper.

References

[1] H.R. Andersen and H. Hulgaard. Boolean Expression Diagrams. In IEEE
Symposium on Logic in Computer Science (LICS), July 1997.

[2] R. Bryant. Graph Based Algorithms for Boolean Function Manipulation. IEEE
Transactions on Computers, 35(8):677-691, August 1986.

[3] O. Coudert and J.-C. Madre. Fault Tree Analysis: 102 Prime Implicants and
Beyond. In Proceedings of the Annual Reliability and Maintainability Symposium,
ARMS’93, January 1993. Atlanta NC, USA.

[4] Y. Dutuit and A. Rauzy. Exact and Truncated Computations of Prime Implicants
of Coherent and non-Coherent Fault Trees within Aralia. Reliability Engineering
and System Safety, 58:127-144, 1997.

[5] Y. Dutuit and A. Rauzy. Polynomial Approximations of Boolean Functions
by Means of Positive Binary Decision Diagrams. In Lydersen, Hansen, and
Sandtorv, editors, Proceedings of European Safety and Reliability Association
Conference, ESREL’98, pages 1467-1472. Balkerna, Rotterdam, 1998. ISBN 90
54 10 966 1.

[6] S. Minato. Zero-Suppressed BDDs for Set Manipulation in Combinatorial
Problems. In Proceedings of the 30th ACM/IEEE Design Automation
Conference, DAC’93, pages 272277, 1993.

