
Bypassing BDD Constru
tionfor Reliability AnalysisPoul Frederi
k Williams a, Ma
ha Nikolska��a b andAntoine Rauzy baDepartment of Information Te
hnology, Te
hni
al University of Denmark,Lyngby, Denmark, e-mail pfw�it.dtu.dkbLaboratoire Bordelais de Re
her
he en Informatique, CNRS/Universit�eBordeaux-1, Bordeaux, Fran
e, e-mail fma
ha,rauzyg�LaBRI.U-Bordeaux.FRKey words: Boolean formula. Data stru
tures. Reliability analysis.1 Introdu
tionIn this note, we propose a Binary Expression Diagram (BED [1℄)-based al-gorithm to 
ompute the minimal p-
uts of boolean reliability models su
has fault trees. BED make it possible to bypass the Binary De
ision Diagram(BDD [2℄) 
onstru
tion, whi
h is the main 
ost of fault tree assessment.We 
onsider boolean formulas built over a set of variables X = fx1; : : : ; xng,the two 
onstants 0; 1 2 B and the usual operators + (or), : (and), � (not),x ! y; z (if-then-else) et
. A literal is either a variable x or its negation �x. Aprodu
t is a set of literals that does not 
ontain a literal and its negation. Aprodu
t is assimilated with the 
onjun
tion of its elements. A minterm overX is a produ
t that 
ontains either positively or negatively all variables of X.Let f be a formula and � be a produ
t that 
ontains only positive literals.We denote by �
X the minterm obtained by adding to � the negative literalsformed over all of the variables o

urring in f but not in �. � is a p-
ut of fif �
X j= f . It is minimal if there is no produ
t Æ � � su
h that Æ
X j= f . Wedenote by �(f) the set of the minimal p-
uts of the formula f and �k(f) theset of the minimal p-
uts with less than k literals.Two de
omposition theorems [4℄ allow the design of algorithms to 
omputethe ZBDD [6℄ that en
odes �k(f) from the BDD that en
odes f . Indeed,
omputing the former requires 
omputing the latter. However, only part ofthe BDD is used, sin
e some of the produ
ts it en
odes are useless to thePreprint submitted to Elsevier Preprint 6 June 1999




omputation of �k(f) [5℄. We show that BEDs make it possible to 
omputeonly relevant parts of the BDD, therefore avoiding a potential exponentialblow-up.The remainder of this note is organized as follows. The next se
tion introdu
esminimal p-
uts. Se
tion 3 brie
y reviews the BED data stru
ture. Se
tion 4introdu
es an extension to BEDs to fa
ilitate fault tree analysis. Se
tion 5gives pra
ti
al results, and �nally, se
tion 6 draws 
on
lusions.2 Minimal P-CutsMinimal p-
uts play a 
entral role in the assessment of fault trees. Booleanformulas des
ribe the potential failures of the system under study, variablesrepresent 
omponent failures. Minimal p-
uts represent minimal sets of 
om-ponent failures that indu
e a failure of the whole system. This notion shouldbe preferred to the 
lassi
al notion of prime impli
ants that also 
aptures theidea of minimal solutions [4,5℄. Minimal p-
uts approximate prime impli
antsby 
onsidering only positive parts of impli
ants, and k-trun
ated minimal p-
uts restri
t the result to those of size at most k. The latter is of pra
ti
alimportan
e in qualitative analysis of fault trees, as it identi�es sets of 
ompo-nent with high probability of simultaneous failure that would 
ause the entiresystem to fail. There do not exist eÆ
ient (i.e. polynomial) algorithms to 
om-pute short prime impli
ants [3℄, while su
h algorithms do exist for minimalp-
uts [5℄ and are illustrated here. These algorithms are based on the followingtheorems. The �rst one establishes that minterms with more than k positiveliterals are useless for 
omputing �k(f). The se
ond theorem gives a re
ursiveprin
iple for 
omputing �k(f) from the Shannon de
omposition of f .Theorem 1 (Dutuit & Rauzy [5℄) Let f be a boolean formula over the setof variables X and k be a integer, then the following equality holds:�k(f) = �1(F \minterms+k (X));where minterms+k (X) denotes the minterms built over X that 
ontain lessthan k positive literals and f is viewed as the set of minterms that satisfy it.Theorem 2 (Dutuit & Rauzy [4℄) Let F = x:f1 + �x:f0 be a boolean for-mula with f1 and f0 not depending on x. Then, �k(f) 
an be obtained as theunion of two sets �k(f) = v:�1[�0 where �0 = �k(f0), �1 = �k�1(f1+f0)n�0, v:P = fv:�; � 2 Pg and n denotes set di�eren
e.We will exploit this fa
t not only to 
ompute �k(f) in
rementally, but toexpand the formula f into an OBDD in
rementally. This is possible using theBED data stru
ture [1℄. 2



3 Boolean Expression DiagramsDe�nition 3 Let X be a set of boolean variables, and let OP be a set ofbinary boolean operators. A BED over X and OP is a labelled ordered DAGB = hV;E; li where V is a set of verti
es, E � V � V a set of edges, l : V !B [OP [X is a labelling fun
tion satisfying:(i) l(v) 2 B ) �(v) = 0,(ii) l(v) 62 B ) �(v) = 2, where � : V ! N gives the arity of a vertex.De�nition 4 The denotation of a vertex of a BED over a set of variables Xand a set of operators OP is a boolean fun
tion from ~x = x1; : : : xjXj ! Bde�ned by D as follows.D[[0℄℄ = �~x:0D[[1℄℄ = �~x:1D[[� [v1; v0℄℄℄ = �~x(D[[v1℄℄ � D[[v0℄℄); 8 � 2 OPD[[x[v1; v0℄℄℄ = �~x(x! D[[v1℄℄;D[[v0℄℄)The basi
 step of 
onversion of a BED into a BDD is the up transformation.De�nition 5 The up transformation is de�ned by:� ((x! f1; f2); (x! f 01; f 02)) up x=) x! (�f1; f 01); (�f2; f 02) :If one of the argument verti
es of � is not labelled by x but by anothervariable y, then a new vertex labelled by x is 
reated : x[y; y℄. We 
all up-one the repeated appli
ation of up transformation to one variable x until it ismoved up to the top of the BED stru
ture. Simultaneous appli
ation of up-one to all variables x1; : : : ; xn is 
alled up-all and 
orresponds to the standardBDD 
onstru
tion.4 Minimal P-Cuts with BEDsIt is 
lear that minimal p-
uts 
an be 
omputed using BEDs, sin
e it is suf-�
ient to 
onvert the BED for f to a BDD using up-all, then to apply thestandard algorithm from [4℄. The disadvantage is that we 
onstru
t the entireBDD for the f , when only part of this information is ne
essary for 
omputingthe p-
uts (theorem 1). The up transformation gives us �ner 
ontrol over the
onversion of the BED to an BDD. We will show that minimal p-
uts 
an be3




omputed by a bottom-up expansion of the formula that only 
onverts whatis ne
essary for the 
omputation. The resulting algorithm does stri
tly less,and often signi�
antly less, work than the standard algorithm.We extend the BED data stru
ture with a new kind of unary operator node,PC, whi
h marks the frontier between a boolean formula and its p-
uts. Nodesabove this frontier represent the BDD en
oding the p-
uts for the formula f asthe disjun
tion of the minterms �
X , where � is a k-trun
ated minimal p-
ut off . In ea
h step of the new algorithm, the up transformation lifts the smallestvariable in an order L over any boolean operators or other variable nodes,until it rea
hes a PC operator. The extended up transformation that is basedon theorem 2 is shown in the �gure 1. PC has two attributes: an ordered listL of the variables o

urring in the formula f under study and the trun
ationsize k (noted between bra
kets).PC(0)[k;L℄ up x=) 0PC(1)[k; "℄ up x=) 1PC(1)[k; x:L℄ up x=) �x:PC(1)[k;L℄PC(x! f; g)[0; x:L℄ up x=) �x:PC(g)[0;L℄PC(x! f; g)[k; x:L℄ up x=) x! S; T (k > 0)T = PC(f)[k;L℄S = PC(f + g)[k � 1;L℄: �TPC(x! f; g)[k; y:L℄ up x=) �y:PC(x! f; g)[k;L℄ (y < x)Fig. 1. P-
ut 
omputation using up transformationTo 
al
ulate the minimal trun
ated p-
uts we use either up-all (
orrespondingto standard algorithm) or up-one. Figure 2 shows how the PC operators \drive"the 
omputation, pulling BED variables up to the frontier. The pro
ess isstarted by seeding a PC operator at the root of the original formula. As longas there are variable nodes below a PC operator, we pull them up one by onein the order L, until either no variables remain or the PC nodes in the frontierexhaust their 
apa
ity (k = 0).Proposition 6 The number of BDD nodes 
reated to en
ode the k-trun
atedp-
uts is bounded by O(nk).The proof is 
lear be
ause the number of minterms �
X , where � is a k-trun
ated p-
ut, is equal to Pki=0 �ni� = O(nk).4



P

PC PC PC PC

xnx0 x2

P

F

PC

x0 xnx1 x2 x3

F

up x1, up x3 up∗

Fig. 2. Computation of p-
uts5 Pra
ti
al ResultsWe test our method experimentally on three fault trees, namely 
ea9601,das9601, and wes9701. They are from CEA (Fren
h Military), Dassault Avi-ation (Fren
h aviation 
ompany), and Westinghouse (Ameri
an nu
lear indus-try), respe
tively. All our experiments are run on a 500 MHz Digital Alpha.Table 1 shows the number of p-
uts of order 1, 2, and 3 for the three faulttrees as well as the runtimes in se
onds to �nd a BDD representation for thep-
uts using up-one. For these 
al
ulations, the size of the BED data stru
turenever ex
eeded 20 MB of memory.No. of p-
uts Runtime [se
℄Name 1 2 3 4 1 2 3 4
ea9601 0 0 1144 2024 2 27 122 683das9601 0 47 80 446 1 2 11 75wes9701 2 211 1079 54436 6 26 151 2000Table 1Number of p-
uts of order 1, 2, 3 and 4, and running times in se
onds to 
omputethem using up-one transformationThese results should be 
ompared with the standard method (the up-all algo-rithm), whi
h is unable to 
al
ulate the p-
uts for 
ea9601 and wes9701. Fordas9601 it su

eeds in building the BDD for the fault tree in about 2 hours.The variable orderings used in the experiments are the ones given in the anony-mous data �les. The standard method depends on the variable ordering, andusing improved heuristi
s to determine a good initial variable ordering willde�nitely improve the performan
e. However, the up-one method will alsobene�t from the use of an improved variable ordering heuristi
.5



6 Con
lusionIn this note we proposed a new method to 
ompute minimal trun
ated p-
uts.The method uses the Boolean Expression Diagram data stru
ture insteadof the standard Binary De
ision Diagram data stru
ture to represent faulttrees. By in
luding a new operator in the Boolean Expression Diagram datastru
ture, it is possible to 
ompute minimal trun
tated p-
uts dire
tly from theBoolean Expression Diagram without ever 
onstru
ting the Binary De
isionDiagram representation of the fault tree (that is often of gigabyte size).We have shown experimental results for three industrial problems and 
om-pared them to the standard method. The results show that our method hasan advantage over the Binary De
ision Diagram methods.A
knowledgementsThanks to David James Sherman of Universit�e Bordeaux-I for giving 
onstru
-tive 
riti
ism on drafts of this paper.Referen
es[1℄ H.R. Andersen and H. Hulgaard. Boolean Expression Diagrams. In IEEESymposium on Logi
 in Computer S
ien
e (LICS), July 1997.[2℄ R. Bryant. Graph Based Algorithms for Boolean Fun
tion Manipulation. IEEETransa
tions on Computers, 35(8):677{691, August 1986.[3℄ O. Coudert and J.-C. Madre. Fault Tree Analysis: 1020 Prime Impli
ants andBeyond. In Pro
eedings of the Annual Reliability and Maintainability Symposium,ARMS'93, January 1993. Atlanta NC, USA.[4℄ Y. Dutuit and A. Rauzy. Exa
t and Trun
ated Computations of Prime Impli
antsof Coherent and non-Coherent Fault Trees within Aralia. Reliability Engineeringand System Safety, 58:127{144, 1997.[5℄ Y. Dutuit and A. Rauzy. Polynomial Approximations of Boolean Fun
tionsby Means of Positive Binary De
ision Diagrams. In Lydersen, Hansen, andSandtorv, editors, Pro
eedings of European Safety and Reliability Asso
iationConferen
e, ESREL'98, pages 1467{1472. Balkerna, Rotterdam, 1998. ISBN 9054 10 966 1.[6℄ S. Minato. Zero-Suppressed BDDs for Set Manipulation in CombinatorialProblems. In Pro
eedings of the 30th ACM/IEEE Design AutomationConferen
e, DAC'93, pages 272{277, 1993.6


