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In this article, we propose a new method for fault tree analysis, called model synthesis, which comes in addition
to traditional assessment techniques. It consists in rewriting the fault tree under study, or the set of minimal
cutsets extracted from this fault tree, so to make some relevant information emerge.

Our implementation of model synthesis relies on encoding Boolean formulas by means of zero-suppressed
Boolean expression diagrams. Rewriting heuristics are efficiently implemented by means of local operations on

these diagrams. A key feature of zero-suppressed Boolean expression diagrams is that they make it possible to
perform partial normalization of Boolean formulas, avoiding in this way the exponential blow-up of calculation
resources most of the other methods suffer from.

We show how to take advantage of the architecture of the systems under study to guide rewriting heuristics.
We illustrate the principles of model synthesis and of its implementation by means of examples.

1. Introduction

Fault tree analysis is one of the prominent techniques for safety and
reliability analyses [1-3]. It is applied in a wide range of industries [4].
Fault trees are classically assessed in two ways: by means of qualitative
analyses, which consists in identifying failure scenarios via the ex-
traction of minimal cutsets, and by means of quantitative analyses,
which consists in calculating probabilistic indicators such as the top
event probability, importance factors or safety integrity levels.

In this article, we propose a new assessment method, called model
synthesis, which comes in addition to classical assessment techniques. It
aims at making some relevant information emerge out of the fault tree
under study. The idea behind model synthesis is to rewrite the original
fault tree or the minimal cutsets extracted from this fault tree, into an
equivalent formula that hopefully sheds a new light on the system
under study. We use thus here the term model synthesis in a quite
different way as several other authors who focus mainly on the auto-
matic construction of fault trees either from high level models [5] or
from reliability graphs [6,7].

Model synthesis in our sense can be useful in different contexts.
First, it can be used to deal with large fault trees, like the ones involved
in probabilistic safety analyses of nuclear power plants. In this context,
model synthesis can help to better understand which parts of the model
are influencing the results the most, i.e. eventually to determine who
are the main contributors to the risk. Second, model synthesis can be
applied onto fault trees that are automatically generated from higher
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level descriptions, as nowadays routinely done in avionic industry [8].
Automatically generated fault trees tend to be very different from those
an expert would design by hand. Model synthesis can be used in this
case to create more amenable models in view of certifying the system
under study. Model synthesis can finally be used in any context to
create synthetic view of failure scenarios. One can for instance factorize
minimal cutsets according to basic events related to similar components
in order to study the impact of these components on the risk as a whole
[9].

Technically, synthesizing a model means rewriting a Boolean for-
mula so to obtain a more hierarchical, compact and hopefully in-
formative representation. The method we propose here relies on zero-
suppressed Boolean expression diagrams, a variant of Boolean expres-
sion diagrams [10] to implement this rewriting process. Compared to
classical binary decision diagrams [11] or zero-suppressed binary de-
cision diagrams [12], zero-suppressed Boolean expression diagrams
make it possible to implement partial rewritings. Partial normalizations
are of a great interest in our context as the information we are seeking
for is in general concentrated onto a small fraction of the basic events.
The rewriting process can therefore be applied on these basic events
only, leaving the remaining of the model unchanged. We provide
mathematical justification for such partial normalizations as well as the
principles of an efficient implementation.

Rewriting procedures are essentially heuristics: they may or may not
give interesting results depending on where and when they are applied.
We show here that it is possible to use the architecture of the system
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under study as guideline for these heuristics. The idea is to keep related
basic events close into the model. It ensures also that the fault tree stays
consistent with the architecture so to make it understandable by the
analyst [13].

The contribution of this article is eventually twofold. First, it pro-
poses to complement traditional fault tree analysis with a new tool,
model-synthesis. Second, it proposes an effective implementation of this
new tool based on zero-suppressed Boolean expression diagrams.

The remainder of this article is organized as follows. Section 2
presents an illustrative example of what can be achieved by means of
model synthesis. Section 3 introduces the zero-suppressed Boolean ex-
pression diagrams technology. Section 4 shows how implement model
synthesis by means of partial operations on zero-suppressed Boolean
expression diagrams. Section 5 reports the experimental results of the
scalability test of the proposed method. Finally, Section 6 concludes this
article.

2. Illustrative example

This section presents the case study we shall use throughout the
article to illustrate ideas and techniques, namely the cooling system of a
pressurized water nuclear reactor.

2.1. System description

The power of model synthesis stands primarily in its ability to make
information emerges out of large models, typically such as those used to
analyze the safety of cooling systems of nuclear power plants.
Nevertheless, we keep here the description of the system as simple as
possible, for pedagogical purposes.

Fig. 1 shows the principle of cooling systems of a pressurized water
nuclear reactor. Nuclear reactions in the reactor vessel produce heat,
heating the pressurized fluid in the primary coolant loop (in black on
the figure). The hot primary coolant is pumped into the steam gen-
erator. Heat is transferred to a lower pressure secondary coolant loop
(in dark grey on the figure) where the coolant evaporates into pres-
surized steam. The transfer of heat is accomplished without mixing the
two fluids in order to prevent the secondary coolant from becoming
radioactive. The pressurized steam is fed through a steam turbine which
drives an electrical generator connected to the electric grid for trans-
mission. After passing through the turbine the secondary coolant is
cooled down and condensed in a condenser. The condenser converts the
steam to a liquid so that it can be pumped back into the steam gen-
erator. The heat of the second loop is transferred to a third loop (in light
grey on the figure) via the condenser. This third loop is usually made of
a refrigerating tower and water which is typically pumped in a river.

We assume here that the cooling system is quadruplicate for the
sake of production and safety, i.e. they are four independent circuits,
each circuit consisting of the above three coolant loops. For technolo-
gical reasons, these four circuits are however not fully independent as
they share the same pressurizer.

To cool the nuclear reaction (and to produce electricity) the cool-
ants must circulate into each of the three loops. This circulation is en-
sured by means of pumps which need to be powered. Normally, the
pumps are powered by the power generated by the plant itself. In case
the power of the plant does not suffice, they can be powered by the
electric grid (off-site power). In case there is no off-site power, on-site
diesel generators can be temporarily used to supply the required power.

2.2. Original model of the system

The fault tree for the cooling system is built classically top-down
(see e.g. [1]), starting from the top-event LOCA (Loss of Coolant Acci-
dent). The cooling system is failed when all the four circuits are failed.
A circuit is failed when at least one of its loops (primary, secondary and
ternary) is failed. This process continues until the suitable level of
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Table 1
Fault tree describing the failures of the cooling system pictured Fig. 1.

LOCA LOCC, - LOCC, - LOCCs - LOCC,
LOCC; = LOPC; + LOSC; + LOTG,
LOPC; = LOPP, + FPR

LOSC; = LOSP;

LOTC; = LOTP,

LOPP, = FPP, + LOPS

LOSP, = FSP; + LOPS

LOTP; = FTP, + LOPS

LOPS = LOIP-LOOP -FDG

LOIP = LOPG, - LOPG,* LOPGy - LOPG,
LOPG; = FCG, + FTB, + LOPC{ + LOSC]
LOPC] = FPP, + FPR

LOSC{ = FSP;

decomposition. Table 1 gives the Boolean equations describing the
original fault tree model we shall consider. Table 2 gives definitions of
acronyms that are used in this fault tree.

2.3. Model synthesis

Model synthesis consists in rewriting the original model into
equivalent formulas so to make information emerge. In other words, it
makes it possible for the analyst to create different views on the model.

View 1: Role of the pressurizer and the power supply. Both the pressurized
and the power supply have obviously a strong impact on the cooling
system safety. An idea can thus be to rewrite the model (the set of
equations given Table 1) so to visualize their role. Fig. 2 shows
graphically the result of the factorization of the top event LOCA with
respect to the two events FPR (failure of the pressurizer) and LOPS (loss
of the power supply). This diagram can be interpreted as follows.

o If the pressurizer is failed (FPR), then the top event (LOCA) is rea-
lized.

¢ If the pressurizer is not failed but the power supply is lost (LOPS),
then the top event is also realized.

e If neither the pressurizer is failed nor the power supply is lost, then
the remaining scenarios to realize the top event are described by the
formula f; - f5 - f5 - f4, where f, = FPR, + FSF,+ FTF. 1 < i < 4.

Note that in this decomposition FPR is a basic event, but LOPS is an
intermediate event. Note also that the choice and the order of these
events depend on the needs of the analyst.

The model pictured Fig. 2 and the original model are equivalent.
The former is indeed much more compact than the latter, but is prob-
ably not the one that the analyst would build upfront.

View 2: Role of primary pumps. The analyst may also want to study the
role of primary pumps. The idea is thus to factorize the original model
with respect to the FPPi’s events (failure of primary pump i, 1 < i < 4).
Fig. 3 shows a partial view of the result. It is possible to calculate an
upper bound p(0)! of the probability of a branch o. For instance, any
scenario under the upper branch of the diagram of Fig. 3,
[p(FPP,-FPP,-FPP;)] = p(FPP,) x p(FPP,) x p(FPPs). This upper bound
may exceed a predefined threshold, meaning that the branch can be
discarded. In our example, the probability of the simultaneous failure of
three of the four primary pumps may be considered as too improbable
to be reasonably considered.

The branch FPP,-FPP,-FPP;-FPF, involves only two failures of pri-
mary pumps. The analyst may want to check the formula corresponding
to this branch. This formula may be however too large to be really
informative. It can be nevertheless exploited, typically by extracting the
basic events it involves, as shown on the figure. This is of interest in
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Table 2
Definitions of acronyms.
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LOCA Loss of Coolant Accident LOCC; Loss of Coolant Circuit i
LOPC; Loss of Primary Circuit i LOSC; Loss of Secondary Circuit i
LOTC; Loss of Ternary Circuit LOPP; Loss of Primary Pump i
LOSP; Loss of Secondary Pump i LOTP; Loss of Ternary Pump i
FPR Failure of Pressurizer FPP; Failure of Primary Pump i
FSP; Failure of Secondary Pump i FTP; Failure of Ternary Pump i
LOPS Loss of Power Supply LOIP Loss of Inside (on-site) Power
LOOP Loss of Off-site Power FDG Failure of Diesel Generator
LOPG; Loss of Power Generation from circuit i FCG; Failure of Current Generator i
FIB; Failure of Turbine
order to validate the model. In our case, the analyst can verify that no o
basic event issued from the first and second circuits shows up in this [ ifEistrue, then ..
'd R
branch. (D LE )
Note that the branches of the decision tree pictured Fig. 3 can be A = ifE is false, then ..
expanded on demand. Some branches may be unfolded further, while LOCA —\ FPR/\ ~
some other may be kept folded, typically because their exploration is \"'T" L &
made less relevant, thanks to symmetry arguments. 3 ‘/LOPS\-;.
- ) . . N fi = FPP,+FSP, +FTP,
Table 3 summarizes the size of the original fault tree (using the - _
K N i K K f» = FPP,+FSP,+FTP,
number of basic and intermediate events), the size of ZBEDs (using the fifa fz fa fo = FPPy+FSPy+FTP,
number of nodes) and the running time of getting the normalized ZBED. f. = FPP,+FSP,+FTP,

As comparison, View 0 gives the result of a full normalization with an
order of variables corresponding to a depth-first left-most traversal of
the model.

2.4. Discussion

In the previous section, we showed two examples of extraction of
useful information from the model. The extraction process requires to
rewrite the original model, typically by factorizing some of its basic and
intermediate events. Several factorizations are possible, providing dif-
ferent views on the model.

Performing such rewritings by hand would be tedious and error
prone. We shall show in the next sections that Zero-Suppressed
Expression Diagrams provide a suitable algorithmic framework to im-
plement them in a simple and efficient way.

3. Zero-suppressed boolean expression diagrams
3.1. Definition

Zero-suppressed Boolean expression diagrams result of ideas
stemmed from Minato’s zero-suppressed binary decision diagrams [12]

Pressurizer

Steam

gcneramr

Vessel

Fig. 2. View of the model obtained by factorizing events FPR and LOPS.

and Andersen’s Boolean expression diagrams [10]. A zero-suppressed
Boolean expression diagram (ZBED) is a directed acyclic graph with
three types of nodes:

e Constant nodes: leaves labeled with Boolean constants (1 and 0).

e Variable nodes: leaves labeled with basic events.

¢ Operator nodes: internal nodes with three out-edges. Such a node is
denoted by t = (u, v, w), where u is the node pointed by the first out-
edge, called the “if-edge”, v is the node pointed by the second out-
edge, called the “then-edge”, and w is the node pointed by the third
out-edge, called the “else-edge”.

Each node of a ZBED is interpreted as a Boolean formula as follows.

¢ A constant node is interpreted by the constant it is labeled with.

® A variable node is interpreted by the basic event it is labeled with.

® An internal node t = (u, v, w) is interpreted by the formula f-g + h.
where f, g and h are the respective interpretations of nodes u, v and
w.

Grid

Turbine Generator

Ternary pump

!
_/

= Primary coolant loop
s SecONdary coolant loop

Ternary coolant loop

Primary pump Condenser On-site
power Off-site
Secondary pump FJ power
Power t
supply

? Diesel generator

Fig. 1. A cooling system of the pressurized water nuclear reactor.
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AN FPR,LOOP,FDG
FSP;, FTPy, FTBy, FCGy
FSP,, FTP,, FTB,, FCG,

Fig. 3. View of the model obtained by factorizing events FPPi’s.

Table 3

Partial normalization comparing with a full normalization with an order of variables obtained from the depth-first-left-most traversal of the architecture in Fig. 16.

# of fault tree events

# of ZBED nodes

Running time (s)

Basic Intermediate Original Partial Full Partial Full

View 0 23 39 81 - 215 - 0.657893

View 1 23 39 51 29 76 0.0024375 0.0207086

View 2 23 39 81 253 229 0.1364435 0.8062672
Table 4

. L (u,1,0) — wu

Interpretation of the ZBED of Fig. 4 in terms of Boolean formulas. ’

Node Definition Interpretation Formula <1a v, ’LU) - v

21 {tz, 1, tz> l+h L+ (O, v, w) -  w

2] {3 1, ty 1+ 1y G+ iy

ts <A, t5, 0> Ats+0 Aty (u,0,w) — w

t {B, C, 0> B-C+0 B-C

t A, to, O Aty +0 At (u,w,wy — w

ts {B, D, 0> B-D+0 B-D

tz <C, D, 0> C-D+0 c-D

— if-edge
— then-edge
--» else-edge

Fig. 4. An example of ZBED.

In the sequel, for the sake of the simplicity, we shall not make the
distinction between nodes and their interpretation as formulas, i.e. we
shall write simply ¢ = u-v + w. The set of basic events showing up in the
ZBED rooted by the node t is denoted by var(r).

Any coherent Boolean formula can be easily encoded by means of
ZBED. The binary operators “-” (and) and “+” (or) can be written as
u-v=<{u,v,0)and u+w=(u, 1, w). Fig. 4 shows an example of the
ZBED whose interpretation is given in Table 4. The formula at top level
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Fig. 5. Rewriting rules used for node elimination.
is thus written as ((A:(B-C)) + (A:(B-D))) + (C-D).

3.2. Unicity of nodes

As for binary decision diagrams [11], ZBED nodes are managed in a
unique table. Each time a node needs to be created, the table is looked-
up to see whether a node with the same characteristics already exists.
This technique is at the core of the efficiency of the decision diagrams
technology.

Moreover, some simplifications are performed at node creation.
Rewriting rules for eliminating equivalent nodes are given Fig. 5. The
adjective “zero-suppressed” comes from the rule <u, 0, w> — w, which
has been originally used by Minato for zero-suppressed binary decision
diagrams [12]. In the sequel, we shall assume that these simplifications
are systematically applied at node creation.

3.3. Indices

Variable nodes do not contain directly references to the variable
they are labeled with. Rather, each variable is assigned an index and
this index is used to label the node encoding this variable.

Both basic events and intermediate events are assigned an index.
Nodes encoding intermediate events are not variable nodes, as they
encode formulas. Nevertheless, as explained in the previous section, we
may want to consider them as variable nodes, typically to factorize the
ZBED. In this case, they are labeled with the index of the intermediate
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u’ = cofactoru E ¢
v/ = cofactorwv F ¢
w’ = cofactor w F ¢

cofactord F ¢ — d
cofactor FEc¢ — ¢
cofactor F Ec — FE
cofactort Ec¢c — ¢
cofactor (u,v,w) E¢ — (v,v,w'} where

if d is a Boolean constant

if F'is a variable or a pseudo-variable node and F' # E

if t.leastIndexr > E.index

Fig. 6. Recursive rewriting rules defining the cofactor algorithm.

factorizec — ¢

factorize £ — F

factorizet — (E,v,

H

w)

g = cofactort E1
h = cofactor g F 0
v = factorizeg
w = factorize h

if ¢ is a constant node
if F is a variable or a pseudo-variable node
if ¢ is an internal node and

E is the variable or pseudo-variable node of ¢ with the least index

— if-edge
— then-edge
--+ else-edge

Fig. 8. Factorized version of the ZBED in Fig. 4 with A<B<C<D.

event they encode. In the sequel, we shall call such nodes pseudo-
variable nodes.

Each node t embeds also the index t.leastindex of the least variable
occurring in the ZBED rooted by t (for variable nodes and pseudo-
variables nodes, t. leastIndex = t. index).

We shall explain the reason of this labeling principle in the next

. 7. Recursive rewriting rules defining the factorize algorithm.

section.
3.4. Cofactors

Model synthesis relies heavily on factorization. Let f be formula and
g be subformula of f. Factorizing f with respect to g consists in rewriting
f as g-fly=1+fly=0, where fl,—. denotes the formula f in which the con-
stant ¢ has been substituted for the subformula g. fl,—p and fl,—; are
called respectively the negative cofactor and the positive cofactor of f
with respect to g.

In model synthesis, we factorize formulas only with respect to
variable or pseudo-variable nodes. Recursive rules defining this op-
eration on ZBED are given Fig. 6. The fourth recursive equation makes
clear the interest of the leastIndex field of ZBED nodes: when t.least-
Index > E.index, we know for sure that the node E does not occur in the
ZBED rooted by the node t. We can therefore stop here the exploration
of this ZBED.

3.5. Caching
Most of operations on ZBED are defined recursively, similarly as the

cofactor operation of the previous section. They take typically one or
more ZBED as input and return a ZBED as output. The efficiency of

SoC(0) “y
soc(1) % 1
soc(B) “ E
SoC((E, v, w)) = E & SoC(v) U SoC(w)

If E' is a variable or a pseudo-variable node

Fig. 9. Recursive rules to obtain SoC(f).
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without 0¢t — 0
without 1¢ — 1
without s 1 — 0
without s 0 — s
withoutt¢t — 0
without st — s
without (F, s, t) (E,v,w) — (B, )

s’ = without s w
s’ = without s" v
t' = without t w
without (F,s,t) (F,v,w) — (F,s )
s’ = without s (F,v,w)
t" = without ¢ (F,v,w)
without (E,s,t) (F,v,w)

—  without (F,s,f) w

ift£1

if s.leastindex > t.index

where

if Flindex < F.index and

if Flindexr < E.index

Fig. 10. Recursive rewriting rules defining the without algorithm.

minimize ¢ — ¢

minimize £ — K
(F.v,w)

minimize (E,s,t) —

u = minimize s
w = minimize ¢
v = without u w

if ¢ is a constant node
if F' is a variable or a pseudo-variable node

where

Fig. 11. Recursive rewriting rules defining the minimize algorithm.

— if-edge
— then-edge
--+ else-edge

Fig. 12. The minimized ZBED of Fig. 8.

these operations can be significantly improved by using caching: each
time the operation op must be performed on parameters py,...px, the
cache is looked up. If it contains an entry for op and p;,...px, the result is
immediately returned. Otherwise, the operation is actually performed,
then cached.

It is again Bryant &. al [11] who introduced this idea in the binary
decision diagram technology.

In the sequel, we shall assume that all algorithms use such caching
technique.
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3.6. Factorization and ordering

It is possible to calculate a normal form for ZBED by factorizing
them recursively with respect to basic events. A ZBED is factorized if
either it is reduced a constant or a variable node, or it is rooted by a
node <E, v, w> where E is a variable node and v and w are ZBED in
which E does not show up.

Let < be a total order over variables. A factorized ZBED is ordered
with respect to < if any of its node <E, v, w>, any variable F showing up
in ZBED in either v or w verifies E<F.

The recursive rules defining the algorithm that rewrite a ZBED into
an equivalent factorized and ordered one are given Fig. 7. To be more
efficient, a node is not replaced by a new one, but rather transformed
into a factorized one. In this way, all the nodes pointing to the node get
the factorized version at no additional cost. This principle has been
introduced for dynamic reordering of binary decision diagrams [14].

Fig. 8 shows the factorized version of the ZBED pictured Fig. 4 ac-
cording to the ordering A<B<C<D. The fully factorized ZBED ordered
according to the order < over the variables (basic events) of a formula f
is isomorphic to the reduced ordered (according to <) binary decision
diagram encoding f. The two diagrams differ however completely in the
way they are obtained. The binary decision diagram associated with a
formula f is built by composing the binary decision diagrams associated
with the sub-formulas of f. The spaces (data structures) of formulas and
binary decision diagrams are thus separated. With ZBED, both formulas
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normalize ¢ — ¢ if ¢ is a constant node
normalize E — FE if E is a variable or a pseudo-variable node
normalize ¢ — (E,v,w) iftis an internal node and

E is the variable or pseudo-variable node of ¢ with the least index

g = cofactort E 1
h = cofactort 0
u = normalize g
w = normalize h
v = without v w

Fig. 13. Recursive rewriting rules defining the normalize algorithm.

p-normalize cq — ¢ if ¢ is a constant node
p-normalize F g — 0 if E is a variable or a pseudo-variable node and g x p(E) < 7
p-normalize K g — FE if E is a variable or a pseudo-variable node and g x p(E) > 7
p-normalize t g — 1 if t.leastIndex > ipmax

p-normalize t g — w if ¢ is an internal node and

E € § is the variable or pseudo-variable node of ¢ with the least index and g x p(F) < 7
h = cofactort F 0
w = p-normalize h ¢

p-normalize t ¢ — (F,v,w) ift is an internal node and

E € § is the variable or pseudo-variable node of ¢ with the least index and g x p(E) > 7

g = cofactort 1

h = cofactort F 0

u = p-normalize g q x p(F)
w = p-normalize h g

v = without u w

Fig. 14. Recursive rewriting rules defining the p — normalize algorithm.

Coolant System

— Coolant Circuit| LOCC

Pressurizer
LOPC [ coolant —(: .
Primary pump

circuit

Secondary Turbine
LOSC |[— C‘?Ol"“_” Generator
circuit
Secondary pump
Ternary

LOTC |— coolant — Temarypump
circuit

Unexpanded ZBED Power supply On-site power

Diesel generator

Fig. 16. An architecture of the coolant system in Fig. 1.

Normalized ZBED

e
N
(E,u.\') is interpreted as (\ E )

|

Fig. 15. Example of partially normalized ZBED.
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/i

M@3,2,2)

Fig. 17. Parametric model M(3, 2, 2).

Table 5
Fault tree describing the failures of M(3, 2, 2) in Fig. 17.

TOP = P+ P+ P3

P;=5S45s (=123
Sy = Py + Pz + Pz (Gi=12
Piji = Sijk1 " Sijk2 *k = 1,2,3)
Sijir = Cykt + SS; a=12)

and their normal forms are encoded within the same space.
3.7. Minimization

In general, once factorized, a ZBED becomes more compact. It is
however often possible to make it even more compact by removing non-
minimal branches. To explain this process, we shall first show how to
interpret a ZBED as a set of cutsets, or equivalently as a sum-of-pro-
ducts.

Let E be a basic event and s be a set of cutsets. We define the product
E © s as follows:

EQ®s o {E.m; 7 € s}

Let t be a factorized, ordered ZBED. SoC(t) denotes the set of cutsets
interpretation of a t. Recursive rules to build SoC(t) are given Fig. 9.
Consider again the ZBED pictured in Fig. 8. We have
SoP(s1) = {A. B. C, A. B. D, A. C. D, A. D}.

Note that SoP(s1) contains the non-minimal cutset A.C.D.

The method to minimize, i.e to remove non-minimal cutsets from a
factorized ordered ZBED <E, v, w> works into two steps. First, it mini-
mizes v into vy, and w into wy,. Second, it removes from v, all the
cutsets it such that there exists a cutset p in SoP(w) such that p C . This
second operation is performed by the without algorithm introduced for
zero-suppressed binary decision diagrams by one of the author in [15]
and further improved in [16].

Figs. 10 and 11 give respectively recursive rewriting rules defining

85

Table 6
Full normalization of M(p, s, d) with order of variables corresponding to a
depth-first left-most traversal of the model.

M # of fault tree events # of ZBED nodes Running time (s)
p s d Basic Intermediate Original Fully

normalized
2 21 6 7 15 15 0.0005875
2 3 1 8 9 21 20 0.001016
2 4 1 10 11 27 25 0.0016374
3 21 9 10 22 29 0.0027617
3 3 1 12 13 31 39 0.0048888
3 4 1 15 16 40 49 0.005376
4 2 1 12 13 29 55 0.0059631
4 3 1 16 17 41 74 0.0257535
4 4 1 20 21 53 93 0.0238569
5 5 1 30 31 81 213 0.0929677
6 6 1 42 43 115 479 0.7946444
7 7 1 56 57 155 1067 8.5812105
8 8 1 72 73 201 2361 140.4506352
2 2 2 18 31 51 43 0.0105937
2 3 2 38 57 111 91 0.0275659
2 4 2 66 91 195 159 0.0564192
2 5 2 102 133 303 247 0.1878167
3 2 2 39 64 112 126 0.0375149
3 3 2 84 121 247 273 0.3376026
3 4 2 147 196 436 480 2.1421809
4 2 2 68 109 197 317 1.0885322
2 2 3 66 127 195 159 0.0922675
2 3 3 218 345 651 529 0.8691808

without and minimize algorithms adapted to ZBED. The minimized
version of the ZBED pictured Fig. 8 is pictured Fig. 12. Note that the
above minimization principle is similar to the one propose by Jung [17]
to calculate minimal cutsets using zero-suppressed binary decision
diagrams.
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Table 7
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Partial normalization (factorization of SS;) comparing with a full normalization compatible with the factorization.

M # of fault tree events # of ZBED nodes Running time (s)

P s d Basic Intermediate Original Partial Full Partial Full

2 2 1 6 7 15 14 15 0.0003807 0.0005609
2 3 1 8 9 21 18 20 0.0014846 0.0010145
3 3 1 12 13 31 31 39 0.001792 0.0035515
3 4 1 15 16 40 37 49 0.0027814 0.0315186
3 5 1 18 19 49 43 59 0.0034137 0.0202382
4 5 1 24 25 65 68 112 0.009577 0.0249844
5 5 1 30 31 81 109 213 0.0198436 0.0790558
6 6 1 42 43 115 194 479 0.0564447 0.778016
7 7 1 56 57 155 347 1067 0.1532794 8.763043
8 8 1 72 73 201 632 2361 0.463898 145.5475206
2 3 2 38 57 111 78 91 0.0050992 0.0220251
2 4 2 66 91 195 134 159 0.0099643 0.0960328
2 5 2 102 133 303 206 247 0.0183755 0.130448
3 2 2 39 64 112 85 126 0.0107254 0.0507543
3 3 2 84 121 247 175 273 0.0760447 0.3209596
3 4 2 147 196 436 301 480 0.0449491 1.7469204
4 2 2 68 109 197 156 317 0.033493 1.0738509
2 2 3 66 127 195 134 159 0.0148028 0.0839745
2 3 3 218 345 651 438 529 0.043567 0.8689405
2 4 3 514 731 1539 1030 - 0.1329544 -

3 2 3 219 388 652 445 - 0.0730657 -

3 3 3 732 1093 2191 1471 - 0.3639312 -

3 4 3 1731 2356 5188 3469 - 1.193553 -

3 5 3 3378 4339 10,129 6763 - 3.7578617 -

4 2 3 516 877 1541 1052 - 0.3506644 -

4 3 3 1732 2513 5189 3484 - 2.1515793 —

4 4 3 4100 5461 12,293 8220 - 9.837303 -

4 5 3 8004 10,105 24,005 16,028 - 31.5285081 -

3.8. Normalization

The normalization of a ZBED performs simultaneously both factor-
ization and minimization, which is more efficient than applying one
operation after the other. The recursive rewriting rules defining the
normalization algorithm are given Fig. 13. The fully normalized ZBED
ordered according to the order < over the variables (basic events) of a
formula f is isomorphic to the reduced ordered (according to <) zero-
suppressed binary decision diagram encoding the minimal cutsets of f.
Here again, the two diagrams differ in the way they are obtained.

4, Partial normalizations

The advantage of the ZBED technology over the (zero-suppressed)
binary decision diagram technology stands in the ability to perform
partial operations, including partial factorizations, minimizations and
normalizations, thanks to the encoding of both formulas and their
normal forms within the same data structures.

4.1. Algorithm

A ZBED can be seen as (a compact encoding of) a decision tree. As
discussed Section 2, it is often sufficient to develop only partially such
decision tree to get relevant information. More exactly, the partial de-
velopment of a decision tree involves: first, a subset S of basic and
intermediate events of interest, together with an order over these
events; and second, a probability threshold 7 under which branches can
be discarded. ‘W is called the care set. It contains the events on which is
decomposition of the ZBED will be performed.

We shall thus modify algorithms presented in the previous section
so to perform partial normalizations. This works as follows.

The first step consists in giving indices 1, 2, ...,imux to events of S,
including intermediate events, according to the order in which we want
them to show up in the decision tree. The remaining basic events are
given indices imax + 1, imax + 2, ... The ZBED is re-labeled according to
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these indices. This operation is linear in the size of the ZBED.

The second step consists in modifying the normalize so to take into
account the set S and the threshold 7. Recursive rewriting rules defining
the p — normalize algorithm are given Fig. 14. The algorithm is initially
called with its second parameter set to 1.0. In the last two rules, if the
pivot variable E is pseudo-variable, p(E) is set to 1.0. It is possible to
take the actual probability of E (or an approximation of this probability)
only if E is a module, i.e. it shares no variable with the rest of the model.

A general representation of the partially normalized ZBED is given
Fig. 15. In the normalized part of this ZBED is essentially similar to
decision trees (or event trees) of Section 2.

4.2. Choice of the care set

In model synthesis, we suggest to use the system architecture as a
guideline to achieve informative rewritings. As exemplified in Fig. 16,
an architecture can be seen as a functional or physical decomposition of
the system, in which events (marked in rectangle) can be assigned to
their relevant functions or components. Based on such assignment,
traversal algorithms (like the depth-first-left-most algorithm) can be
implemented to order and group events automatically in the archi-
tecture.

Guiding by the system architecture, the ZBED can be rewritten in a
way that maps the architecture, which means to create similarities in
their way of decomposition between the ZBED and the architecture.
With the help of this mapping, we provide a possibility to check the
consistency between the fault tree model and the system design.

5. Experiments

In this section, we provide the scalability test of the proposed model
synthesis method. The model used to perform the test is a multilevel
parallel-series system, denoted by M(p, s, d), which is characterized by
three parameters:
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e p: the number of parts in parallel at each layer
e s: the number of parts in series at each layer
e d: the depth of alternation

Fig. 17 gives an example of M(3, 2, 2). The last level of the hierarchy
is made of a series of two components: a local independent component
C and a support system SS dedicated to the first parallel line. For in-
stance, the unit Sy (i = 1,2,3;j =1, 2,k =1, 2, 3; I = 1, 2) in the last
level of the model M(3, 2, 2) is comprised by the series of Cyy; and SS;,
where SS; is dedicated to P;.

The fault tree describing the failures of M(3, 2, 2) is exemplified in
Table 5.

Two kinds of experiments are implemented:

e A full normalization of the model with an order of variables corre-
sponding to a depth-first left-most traversal of the model, of which
the results are given in Table 6.

e A partial normalization (factorization of SS;) comparing with a full
normalization compatible with the factorization, of which the re-
sults are given in Table 7. For the last nine cases in Table 7, the full
normalization is not proceeded since the running time is more than
2000 seconds. It also shows that partial normalizations are far more
efficient when dealing with large models.

6. Conclusion

In this article, we propose a new method, called model synthesis,
which consists in rewriting the fault tree under study so to make some
relevant information emerge. The rewriting relies on an encoding of
Boolean formulas by means of zero-suppressed Boolean expression
diagrams. A key feature of zero-suppressed Boolean expression dia-
grams is that they make it possible to perform partial normalization of
Boolean formulas. To get relevant information, it is often sufficient to
develop only partially the diagram, which is also more efficient than a
full factorization. For partial normalization, analyst can choose a care
set guided by the system architecture and a probability threshold 7 to
decide under which branches can be discarded. As future work, we plan
to extend this method to non-coherent systems and to support other
quantitative analyses like the calculation of importance measures [18].
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