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ABSTRACT
In this article, we present a new approach of modelling epistemic
uncertainties in degradation processes. This approach is established
in the framework of finite degradation structures (FDSs), which is
recently proposed by the authors and can be seen as a formal
extension of the fault tree analysis into multistate systems. When
epistemic uncertainties are added to the states of the system, it
implicitly increases the number of states and make even the Boolean
systems become multistate. In the existing approaches, the addition
of epistemically uncertain states as well as the new valuation map-
pings of the operations for those states should be done manually
by the analysts depending on the type of system and its compo-
nents. This manual addition may be time-consuming, error-prone
and lack of generality, especially when systems get large and com-
plex. Instead of manually remodelling the system, we propose in this
article to automatic transform the model built on FDSs into epis-
temic space to take into account epistemic uncertainties. The pro-
posed automatic transformations are mathematically defined and
explained. As results, the uncertainty-embedded (critical) scenarios
and probabilistic indicators like the belief and the plausibility in the
Dempter–Shafer theory can be obtained. Illustrative examples with
experimental results are also provided.
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1. Introduction

Since 1960s, Boolean logics have been widely applied in reliability and safety analy-
sis, i.e. as the mathematical basis of combinatorial models like fault trees, event trees
and reliability block diagrams. In fault tree analysis (FTA), components are assumed
to be either working or failed and they are modelled by Boolean variables taking val-
ues in {0, 1}, where 0 stands for working and 1 stands for failed. A fault tree is made
up of events and logic gates, where events are Boolean variables and logic gates are
AND gate, OR gate, XOR gate, . . . , which are used to describe the failure mechanism of
the system under study ( see Ruijters & Stoelinga, 2015). Fault tree models are there-
fore Boolean functions, based on which the probability of top event and the minimal
cutsets (i.e. prime implicants) (Rauzy, 2001) can be calculated to support the required
reliability and safety analysis.
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However, when the states of component are not Boolean, i.e. that it may experi-
ence a series of degradation states before ultimately being failed, the classical FTA
becomes inapplicable. Many researches have been dedicated to solve this situation.
The first is to use the so-called state/transition models (i.e. finite state automata), such
as Markov chains, Petri nets and guarded transition systems (Rauzy, 2008). Although
these models are able to capture multistate features, their computational complexity
of calculating risk indicators (i.e. using stochastic simulations) increases dramatically
when systems get large (Rauzy, 2018). The second solution is to add more truth val-
ues between 0 and 1, for instance, the fuzzy sets (Zadeh, 1965, 1999) and theories like
the so-called multistate systems (Ushakov, 2012), universal generating functions (Lev-
itin, 2005), multi-valued logics (Zaitseva & Levashenko, 2017) and multi-valued decision
diagrams (Nakahara et al., 2017; Zhai et al., 2015). These approaches are well designed
for probabilistic calculations, however, the notion of minimal cutsets in traditional FTA
has not been fully concluded, since they only compare the minimality between the
working state with other non-working states while not provide a formal way to define
the ‘minimality’ between degradation states and failed states.

In order to realise the formal and complete extension of FTA into multistate sys-
tems, we have proposed a unified combinatorial modelling framework, called finite
degradation structures (FDSs) (Rauzy & Yang, 2019b). In FDSs, the state space of an
object (i.e. component/subsystem/system) is modelled by a partially ordered set, more
exactly a meet-semi-lattice. The partial orders in such meet-semi-lattice are interpreted
as degradation orders, by which the states are ordered according to their degradation
levels in the state space of the object. Thanks to this ordering relationship, the notion of
minimal cutsets can be fully extended into multistate systems, i.e. that the minimality
of cutsets are defined by the minimality of their degradation levels. The cutsets analy-
sis in FDSs is therefore named as scenarios analysis since not only failure scenarios (i.e.
cutsets) but also degradation scenarios as well as the working scenarios can be anal-
ysed. In FDSs, the notion of minimal cut/path sets is replaced by the notion of minimal
and maximal scenarios. Moreover, to support the calculation of probabilistic risk indi-
cators, we allow to equip the meet-semi-lattices with probability measures so that the
indicators calculated in FTA, such as probability of failure and importance measures,
can be calculated in a similar way in FDSs.

The modelling of epistemic space of degradation process can be seen as a typical
application of FDSs. Generally, reliability and safety models are built under the con-
dition that the knowledge about the current state of system is complete. However,
such condition may not be fulfilled in all situations, i.e. that there may be some dis-
crepancies between the diagnostic made on the state of system and its actual state.
These discrepancies will implicitly increase the number of states (i.e. by introducing
uncertain states) that are needed to be studied in the system and eventually make
even the Boolean systems become multistate. This is exactly where FDSs can come
into play.

Another highlighted advantage of applying FDSs to model epistemic uncertainties
is that each time when needs to add uncertainties, the model can be automatically
transformed into epistemic space rather than being manually reconstructed. This auto-
matic transformation is more efficient, more generic and less error prone than the
manual work especially when the number of states in the state space increases.
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Technically, this automatic transformation is made up of two parts: the transfor-
mation of FDSs and the transformations of operations on FDSs. For the former, the
degradation orders can be automatically transformed while the probability measure
should be reassigned as belief functions (see the Dempster–Shafer theory in Demp-
ster, 2008; Shafer, 1976 and the subsequent theories like Salicone, 2007). For the
operations on FDSs, we propose four transformations regarding different places where
uncertainties are added. The assessment of the transformed model follows the same
procedure as the original one. Calculation algorithms can be found in our papers
(Rauzy & Yang, 2019a; Yang & Rauzy, 2019). As results, uncertainty-embedded (critical)
scenarios and probabilistic indicators such as belief and plausibility can be calculated
from the transformed model.

The rest of the article proceeds as follows. Section 2 presents a case study of the
attack of a storage farm and identifies the epistemic uncertainties focused in this arti-
cle. Section 3 gives a quick view of the modelling framework of FDSs. Section 4 shows
the proposed automatic transformations. Section 5 presents two examples of how to
reinterpret models built on FDSs. Section 6 identifies the accessible resulted indica-
tors and shows the calculation results of two examples in Section 5. Finally, Section 7
concludes the article.

2. Illustrative case study

2.1. System description

This case study is extracted from Misuri et al. (2018). The objective is to analyse the
security problem of the storage farm if an attack (which is uncertain) happens.

The outline of the storage farm is shown in Figure 1.
For the sake of simplicity, the fault tree model of this case study is written by the

following Boolean equations:

Attack(OR) := ∨(AG, AW)

Attack(XOR) := �XOR(AG, AW)

AG := ∧(UIG, Exp)

AW := ∧(UIW , Exp)

UIG := ∧(∧(FSL, CCTV), SF)

UIW := ∧(∧(CCTV , SF), Doc)

Exp := ∧(IED, Reg)

FSL := ∧(∨(MG, FF), Pat)

Doc := ∧(Pat, DB)

(1)

The acronyms in the above equations can be found in Table 1. The two top events
Attack(OR) and Attack(XOR) represent the two different points of view of the success
of the attack with respect to the attack via ground AG and the attack via water AW. The
operators ∨, ∧ and �XOR stand for the disjunction, the conjunction and the exclusive-
OR operation. The valuations of ∧(u, v), ∨(u, v) and �XOR(u, v) are given in Table 2.
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Figure 1. Case study inMisuri et al. (2018), where the premises of the storage farm are outlined inwhite;
the two intrusion paths considered, ‘Via Ground’ and ‘Via Water’ are reported as white arrows.

Table 1. Definitions of acronyms.

AG Attact via Ground AW Attact via Water
UIG Undetected Intrusion from Ground UIW Undetected Intrusion fromWater
Exp Explosion FSL First Security Layer
FF First Fence SF Second Fence
Pat Patrol MG Main Gate
Doc Docking DB Docking Barriers
IED Improvised Explosive Device Reg Regress

Table 2. The valuation of∧(u, v),∨(u, v) and �XOR(u, v).

∧ ∨ �XOR

v W F v W F v W F

u W W W u W W F u W W F
F W F F F F F F W

2.2. Incomplete knowledge on states

In reliability and safety analysis, uncertainties can be categorised into aleatory uncer-
tainty and epistemic uncertainty (Helton & Burmaster, 1996; Parry, 1996). The aleatory
aspect of uncertainty is addressed when the occurrence of an event or a phe-
nomenon is modelled as a random variable in a stochastic manner. Therefore, aleatory
uncertainty can be mathematically modelled using probability theory. The epistemic
uncertainty is caused by the incomplete information and the lack of knowledge.
Although probabilistic measure is also used to quantify epistemic uncertainty, it is
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interpreted – different from the probability of random variables – as a kind of sub-
jective probability or belief that measures the analysts’ confidence on a phenomenon.

In this article, we focus on the epistemic uncertainty caused by the incomplete
knowledge on the states of objects (i.e. components/subsystems/system).

Given a multistate component C, let the finite set � = {x1, . . . , xn}(n ≥ 1) be its state
space and v be its state variable. Denote the valuation domain of v by dom(v).

• If the states of C are certain, then dom(v) = �;
• If the states of C are epistemically uncertain, then dom(v) = 2�\{∅} = �.

2� is the power set of �. � is called the epistemic space of � which contains all the
epistemically possible values of v (Bjerring, 2014). The empty set ø is excluded from �

since v should take at least one value in � according to the closed-world assumption.
Take the Boolean component as example. The state space � is {W , F}, where W

stands for working and F stands for failed. According to the above definition, its epis-
temic space � is 2{W ,F}\{∅} = {{W}, {F}, {W , F}}. Each element in � can be understood
as follows:

• {W} means that it is known that the component is working;
• {F} means that it is known that the component is failed;
• {W , F} means that the state of the component is unknown between W and F.

2.3. Problems in modelling epistemically uncertain states

Reliability and safety models are generally built under the condition that the knowl-
edge about the current state of system is complete, e.g. the fault tree in Equation (1).
However, such condition may not be fulfilled in all situations, i.e. that there may be
some discrepancies between the diagnostic made on the state of system and its actual
state. These discrepancies will implicitly increase the number of states (i.e. by intro-
ducing uncertain states) that are needed to be studied in the system. For example, the
epistemic space � = 2{W ,F}\{∅} = {{W}, {F}, {W , F}} has an additional uncertain state
{W , F} comparing to the state space � = {W , F}. This enlargement will obviously make
even the Boolean components/systems become multistate.

When epistemic uncertainties are added to the model, a direct consequence is that
both of the valuation domains of related variables and the valuation mappings of their
operations should be adapted. In the state-of-the-art literature, this adaptation is done
manually by the analysts depending on the type of system and its components. How-
ever, the manual adaptation may become time-consuming and error-prone when the
number of states in the state space increases, and moreover lack of generality when
the type of operations varies from one system to another.

Let’s do a simple calculation to estimate the adaptations needed to be done when
epistemic uncertainties are added to two components of the same type in the system
under study.

Assume that the states of both two components are valued in � and there is n states
in �. Then, the number of elements in their epistemic space � is 2n − 1 since � =
2�\{∅}. The number of newly added elements in � is therefore 2n − n − 1. Consider
a binary operation applied on those two components, i.e. � × �. When epistemic
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Table 3. Number of newly added epistemically uncertain
states and valuation mappings for a binary operation.

# of states
# of epistemically
uncertain states

# of new valuation
mappings

n 2n − n − 1
(2n − n − 1)2 +
2n · (2n − n − 1)

1 0 0
2 1 5
3 4 40
4 11 209
5 26 936

uncertainties are added to both components, the input domain of such operation is
changed to � × �. Therefore, the number of new valuation mappings needed to be
added is (2n − n − 1)2 + 2n · (2n − n − 1). Table 3 gives the concrete number of these
numbers in the case of n = 1, 2, 3, 4, 5.

From Table 3, we can see that when n = 2, there is only one new state needed to
be added in � for each component and 5 new valuation mappings to be added for
each binary operation. This is exactly the case studied in Misuri et al. (2018), where val-
uation domains and valuation mappings are manually adjusted for adding epistemic
uncertainties. However, when n = 3, 4 and 5, we can see that the number of new val-
uation mappings to be added for a binary operation increases rapidly, which is 40,
209 and 936. It means that in these cases, the manual addition of those new valuation
mappings becomes almost unfeasible.

Moreover, there are also components whose states are certain (e.g. components
that are continuously monitored) or whose uncertainty is not important so that can
be ignored in the analysis. It means that uncertainties do not need to be added to all
components of the system under study. As result, the model will be mixed up with
uncertain/certain components and operations. This heterogeneity will also increase
the difficulty of modelling the system as well as calculating required risk indicators.

In FDSs, the aforementioned modelling and calculation problems can all be solved.
First, the problem of adding large number of valuation mappings when n ≥ 3 can be
solved by applying automatic transformations of operations on FDSs. If the original
model (i.e. without uncertainty) is built on FDSs, the addition of epistemic uncer-
tainties only requires to reassign the belief function as probability measure for those
components where uncertainties are added and reinterpret the model by simply
declaring which of the four transformations should be used for each operation (see
Sections 4 and 5). Second, we demonstrated in Section 4 that the framework of
FDSs is closed under the proposed transformations, which means that the uncer-
tain/certain components and operations can be modelled and assessed in a uniform
way using FDSs.

3. Finite degradation structures

3.1. Formal definition

In mathematical point of view, finite degradation structures (FDSs) are meet-semi-
lattices equipped with probability measures.
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Let D be a set and � be a partial order over D. The pair 〈D, �〉 is a partially ordered set
(poset) if the following axioms hold, i.e. ∀ x, y, z ∈ D:

• x�x (Reflexivity)
• If x�y and y�z, then x�z (Transitivity)
• If x�y and y�x, then x = y (Antisymmetry),

Definition 3.1: A meet-semi-lattice, denoted by 〈D, �, ⊥〉, is a poset 〈D, �〉 that has a
least element ⊥ ∈ D such that ∀ x ∈ D, x 
= ⊥ ⇒ ⊥�x.

Definition 3.2: A finite degradation structure (FDS) is defined as a quadruple
〈D, �, ⊥, p〉 such that D is finite, 〈D, �, ⊥〉 is a meet-semi-lattice and p : D → [0, 1] is
a probability measure on D such that

∑
d∈D p(d) = 1.

FDSs are used to model state spaces.
The partial order � is named as degradation order and interpreted as ‘less or equally

degraded than’. For instance, the working state W is obviously less degraded than
the failed state F, i.e. denoted by W�F. If two states x and y are incomparable, they
are denoted by x∼y. For instance, we may consider that the failed-safely state Fs is
incomparable with the failed-dangerously state Fd, i.e. Fs∼Fd.

Figure 2 illustrates four FDSs that can be used in reliability and safety analysis.
Such diagram is called Hasse diagram, where vertices are states and any relation x�y
is drawn as a line segment that goes upward from x to y. For simplicity, we name
respectively the FDSs in Figure 2(a–d) by WF, WDF, SWF and WFdFs.

For each FDS, it is possible to equip with a probability measure p : D → [0, 1] to
record the probability of being in each state in D. The probability measure p can also
evolve over time, i.e. p : D × R+ → [0, 1] and p(d, t) is the probability of being in the
state d ∈ D at time t ∈ R+.

More examples of applying FDSs in reliability modelling can be found in our paper
(Yang & Rauzy, 2018).

3.2. Operations

In FDSs, two types of operations are provided to model the failure mechanism of the
system under study.

Figure 2. Examples of FDSs used in reliability and safety analysis.
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The first is called the monoidal product of FDSs, denoted by ⊗, which achieves
the composition of state spaces of components. The second is called the abstraction
between FDSs, which achieves the mapping from the composed state spaces to the
system’s state space.

Denote the set of all FDSs by FDS. We can prove that FDS is closed under both of
these two operations.

Definition 3.3: The (monoidal) product of FDSs is defined as the bifunctor ⊗ :
FDS × FDS → FDS such that for all L1 : 〈D1, �, ⊥1, p1〉,L2 : 〈D2, �, ⊥2, p2〉 ∈ FDS,
L1 ⊗ L2 = 〈D⊗, �, ⊥⊗, p⊗〉, where:

• D⊗ = D1 × D2;
• ∀ (x1, x2), (y1, y2) ∈ D⊗, (x1, x2)�(y1, y2) ⇔ (x1�y1) ∧ (x2�y2);
• ⊥⊗ = (⊥1, ⊥2);
• ∀ (x, y) ∈ D⊗, p⊗(x, y) = p1(x) · p2(y).

Figure 3 shows graphically the products WF ⊗ WF, WF ⊗ WDF, WDF ⊗ WF and
WDF ⊗ WDF.

Definition 3.4: Let S : 〈DS, �, ⊥S, pS〉 and T : 〈DT , �, ⊥T , pT 〉 be two FDSs. An abstrac-
tion from S to T is a mapping ϕ : S → T such that:

• ϕ is surjective, i.e. ∀ y ∈ DT , ∃x ∈ DS, ϕ(x) = y,
• ϕ(⊥S) = ⊥T ,
• ∀ y ∈ DT , pT(y) = ∑

x∈ϕ−1[y] pS(x).

A binary operation on FDSs is therefore an abstraction φ in the following form:

φ : A ⊗ B → C

Figure 3. The resulting product ofWF ⊗ WF,WF ⊗ WDF,WDF ⊗ WF andWDF ⊗ WDF.
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whereA,B ∈ FDS are the valuation domains of the two input arguments and C ∈ FDS
is the valuation domain of the output.

Additionally, if ∀ x1, x2 ∈ DS, x1�x2 ⇒ ϕ(x1)�ϕ(x2), then ϕ is also called coherent (or
monotone).

3.3. Finite degradation models

The models built over FDSs are called finite degradation models (FDMs).
Let V be a set of variables, O be a set of operators and α : O → N be the arity of

operators.

Definition 3.5: A finite degradation model (FDM) M is a set of equations written over
〈V, O, α〉:

M :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x1 := f1

x2 := f2

· · · · · ·
xm := fm

(2)

such that m ≥ 1, x1, . . . , xm ∈ V, and f1, . . . , fm are formulas written over 〈V, O, α〉

The set of formulas written over 〈V, O, α〉 is defined as the smallest set such that:

• Any variable v ∈ V is a formula.
• If ♦ ∈ O is an operator such that α(♦) = n and f1, . . . , fn are formulas, then

♦(f1, . . . , fn) is a formula.

Similar to the intermediate events and the basic events in fault trees, the variables
in M are also divided into two kinds:

• Flow variables: the variables appearing in the left side of the equations, represent-
ing the states of a group of components or the state of subsystem/system;

• State variables: the variables appearing only in the right side of the equations,
representing the states of bottom-level components whose valuation is regarded
as the input of the model.

The set of state variables is denoted by S and the set of flow variables is denoted by
F. Then, V = S � F.

The interpretation of a FDM M is the following abstraction of FDSs:

M :
⊗
vs∈S

dom(vs) →
⊗
vf ∈F

dom(vf ) (3)

This abstraction realises the mapping from the valuation of state variables to the val-
uation of flow variables. More explanations of FDMs and their modelling language
FDS-ML can be found in our paper (Yang & Rauzy, 2019).

Take the model in Equation (1) as example.
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There are eight state variables (Pat, DB, MG, FF, SF, IED, Reg and CCTV) and nine flow
variables (Doc, FSL, Exp, UIW, UIG, AW, AG, Attck(OR) and Attack(XOR)). In the framework
of FDSs, each of these 17 variables can be valued in the binary FDS WF, see Figure 2(a),
i.e. ∀ v ∈ V, dom(v) = WF. Therefore, the model M in Equation (1) can be interpreted
as the following abstraction of FDSs:

M : (WF)8 → (WF)9

where (WF)n stands for n times the monoidal product ⊗ of WF.

4. Automatic transformations of FDMs into epistemic space

The automatic transformation of FDMs is made up of two constitutive parts: the
transformation of FDSs and the four transformations of operations on FDSs.

4.1. Transformation of FDSs

4.1.1. Formal definition
Definition 4.1: The transformation of FDSs is defined as the unary operation (.)u :
FDS → FDS such that ∀L : 〈�, �, ⊥, p〉 ∈ FDS, (L)u = 〈�/≡, �, {⊥}, m〉, where:

• � = 2�\{∅}.
• ∀ S, T ∈ �, S�T ⇔ (∀ y ∈ T , ∃x ∈ S, x�y) ∧ (∀ x ∈ S, ∃y ∈ T , x�y).
• �/≡ is the quotient set of � by ≡ (equivalence).
• m : � → [0, 1] is a mass assignment on � satisfying

∑
X∈� m(X) = 1.

� is called the epistemic space of �, which is the same as introduced Section 2.2. The
elements in � are called epistemic states, which should be distinct with the (ordinary)
states in �.

In the following part of this article, we shall use capital letters such as X, Y, Z, S and
T to denote epistemic states, while use lowercase letters like x, y and s for (ordinary)
states.

For any epistemic state X ∈ �, if |X| = 1, i.e. there is only one possible value in X, we
say that X is a certain (epistemic) state; otherwise, X is an uncertain (epistemic) state.

In the following sections, we will demonstrate that FDS is closed under the transfor-
mation (.)u.

4.1.2. Degradation orders among epistemic states
As defined in Definition 4.1, any epistemic state X ∈ � is a non-empty subset of �.
Therefore, comparing the degradation level of two epistemic states means to compare
the degradation level of two subsets of �.

A traditional way is to assign each subset a real number as indicator and compare
their magnitude. But the problem is that all real numbers are comparable, i.e. the par-
tial orders in the transformed FDSs will be approximated into total (or linear) orders if
using real numbers to make the comparison.

In order to solve this problem, we propose to directly use the degradation orders in
L to define the degradation orders in (L)u, see Definition 4.1.
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For all S, T ∈ �, the only case that S and T are comparable is that both of the two
conditions ∀ y ∈ T , ∃x ∈ S, x�y and ∀ x ∈ S, ∃y ∈ T , x�y are satisfied. Otherwise, S and
T are incomparable. These two conditions constrain both states in S and T and ensure
the comparability of S and T.

In the following part of this section, we will use the three transformed FDSs:
(WF)u, (WDF)u and (WFdFs)u, to explain the meaning of degradation orders among
epistemic states defined in Definition 4.1.

These three transformed FDSs are pictured in Figure 4.
For (WF)u, its epistemic space is � = 2{W ,F}\{∅} = {{W}, {F}, {W , F}} and the degra-

dation orders among those epistemic states are {W}�{W , F}�{F}.

• {W}�{W , F} indicates that the epistemic state {W} (i.e. the component’s state is
known to be working) is less degraded than the epistemic state {W , F} (i.e. the
component’s state is unknown between W and F). The reason is that comparing
to {W}, {W , F} has an extra possibility to be in a more degraded state F.

• Similarly, {W , F}�{F} indicates that the degradation level of {W , F} is lower than
{F} since comparing to {F}, {W , F} has an extra possibility to be in a less degraded
state W.

For (WDF)u, � = 2{W ,D,F}\{∅} = {{W}, {D}, {F}, {W , D}, {D, F}, {W , F}, {W , D, F}}. The
degradation orders among those epistemic states can be found in Figure 4.

• The linear degradation orders {W}�{W , D}�{D}�{F, D}�{F} and {W}�{W , D}�
{W , F} ≡ {W , D, F}�{F, D}�{F} can be understood in a similar way as those in
(WF)u.

• The equivalence {W , F} ≡ {W , D, F} indicates that their degradation levels equiv-
alent, although they are not equal.

• The incomparable pairs in (WDF)u are {D}∼{W , F} and {D}∼{W , D, F}, since for
those epistemic states the conditions in Definition 4.1 are not satisfied.

Figure 4. Graphical representation of (WF)u, (WDF)u and (WFdFs)u.
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Mathematically, if ∃X , Y ∈ � such that X�Y , Y�X and X 
= Y , then X ≡ Y . We can
deduce from Definition 4.1 that the equivalence occurs only when there are more than
three states ordered linearly.

Consider a chain LC (i.e. a linearly ordered subset) of the FDS L, such that LC =
{⊥c, x1, . . . , xn, �c}, n ≥ 1 and ⊥c�x1� · · ·�xn��c. ⊥c and �c are the two extreme
elements of LC .

Then, we can deduce from Definition 4.1 that ∀ X ⊆ LC\{⊥c, �c}, X 
= ∅:

{⊥c, �c} ≡ {⊥c, �c} ∪ X

This equivalence means that if the two extremes ⊥c and �c are included in an epis-
temic state, then no matter how many intermediate states (i.e. in X) are included, the
degradation level of {⊥c, �c} ∪ X is bounded by {⊥c, �c}.

It is worth noticing that the existence of equivalences makes the partial order �
become a pre-order in �. In order to keep � being a partial order, the equivalent
elements in � should be merged into quotients. Denote the quotient set of the equiv-
alence ≡ on the set � by �/≡. Then, � is a partial order over the quotients set �/≡
and it is easy to verify that {⊥} is the least element of �/≡.

Therefore, the transformed result (L)u = 〈�/≡, �, {⊥}, m〉 in Definition 4.1 is still an
FDS and FDS is closed under the transformation (.)u.

(WFdFs)u is the simplest case to understand the transformation of incomparable
states. From Figure 4, we can see that:

• {W , F1}∼{W , F2}, because they both have the possibility of being in the working
state W and the possibility of being in one of the two incomparable failed states
F1 and F2.

• {W , F1}�{W , F1, F2} and {W , F2}�{W , F1, F2}, because compared to {W , F1} and
{W , F2}, {W , F1, F2} has an extra possibility of being in another failed state. In other
words, {W , F1} and {W , F2} mean that we know that one of the failed state can be
excluded, while {W , F1, F2} means that we know nothing about the object’s state.
Accordingly, {W , F1, F2} has a higher degradation level than {W , F1} and {W , F2}.

• {F1}, {F2} and {F1, F2} are all more degraded than {W , F1, F2} for not having the
possibility of being in the working state W.

• {F1}∼{F2}∼{F1, F2}, because in these three epistemic states the component is
sure to be failed but the only difference is whether the failed state is certain (i.e.
{F1} or {F2}) or not (i.e. {F1, F2}). Comparing to {F1} and {F2}, {F1, F2} doesn’t mean
that there is an extra possibility of being in and extra failed state. Instead, it only
means that the failed state is uncertain. Therefore, the degradation levels of these
three epistemic states are considered to be incomparable.

4.1.3. Mass assignment
In epistemic space, the probability measure is not the probability of states but a sub-
jective belief which measures the analysts’ confidence on the occurrence of epistemic
states.

The belief functions are introduced by Dempster (Dempster, 2008) and then rein-
forced by Shafer (Shafer, 1976). In the Dempster–Shafer theory, the allocation of belief
(mass) functions to uncertain phenomena is called basic belief assignment (BBA) or
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mass assignment. As in Definition 4.1, the mass assignment m is a function from � to
[0, 1] such that

∑
X∈� m(X) = 1.

In practice, the mass assignment m is usually obtained by empirical data or exper-
tise estimations. It cannot be directly deduced from the probability p since they are
different measures of different phenomena. m is subjective while p is objective.

Given p and m, we say that p is compatible to m (and vice versa) if the following
inequality holds ∀ s ∈ �:

0 ≤ p(s) ≤
∑

s∈X ,X∈�

m(X) ≤ 1 (4)

This inequality indicates that the ‘real’ probability p(s) of being in the state s should
not exceed the sum of mass of all epistemic states X containing s.

Table 4 gives a concrete example of the compatible m and p. In this table, the partial
probability p(s)|X represents the allocation of the state probability p(s) into each epis-
temic state X. For any state s ∈ �, if s /∈ X , then p(s)|X = 0. Therefore,

∑
X∈� p(s)|X =

p(s) and the mass assignment m(X) can be obtained by summing all the partial prob-
abilities related to X, i.e. ∀ X ∈ �, m(X) = ∑

s∈� p(s)|X . It is easy to verify that the mass
assignment m obtained in this way is compatible with p satisfying the inequality in
Equation (4).

4.1.4. Probabilistic risk indicators
As mentioned in Section 4.1.3, we shall use those indicators in the Dempter–Shafer evi-
dence theory, i.e. the belief and the plausibility, to quantify the occurrence possibility
of epistemic states.

According to the Dempster–Shafer theory, the belief of an epistemic state X ∈ �,
denoted by Bel(X), can be calculated as follows:

Bel(X) =
∑

Y∈�,Y⊆X

m(Y) (5)

Bel(X) quantifies the mass of evidences supporting X.
In Shafer’s original work, if m(∅) = 0, m is called normalised.
Since ø is always excluded in � (see Definition 4.1), the mass assignment m in � is

always normalised and we can deduce from Equation (5) that Bel(�) = 1.
The plausibility of an epistemic state X ∈ �, denoted by Pl(X), quantifies the mass

potentially supporting X, i.e.

Pl(X) =
∑

Y∈�,Y∩X 
=∅
m(Y) (6)

If m is normalised, then Pl(X) = 1 − Bel(�\X).

Table 4. Mass assignmentm in (WDF)u and a compatible probability measure p inWDF.

Epistemic states X {W} {D} {F} {W ,D} {W , F} {D, F}{W,D, F} Sum

Probability measurea p(W)|X 0.5 – – 0.1 0.05 – 0.05 0.7
p(D)|X – 0.15 – 0.03 – 0.01 0.01 0.2
p(F)|X – – 0.08 – 0.005 0.01 0.005 0.1

Mass assignment m(X) 0.5 0.15 0.08 0.13 0.055 0.02 0.065 1
ap(s)|X represents the allocation of p(s) into each epistemic state X such that

∑
s∈X p(s)|X = p(s) and p(s)|X = 0 if x /∈ X .
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Moreover, let P be a probability function such that ∀ X ∈ �, P(X) = ∑
s∈X p(s). Then,

the belief Bel(X) and the plausibility Pl(X) can be respectively seen as a lower bound
and an upper bound of P(X), i.e.

Bel(X) ≤ P(X) ≤ Pl(X)

The belief and the plausibility are indicators applied on the epistemic states in �. How-
ever, it is also of interest to have indicators applied on the states in �. Following this
idea, we propose two new indicators, denoted by Best and Worst.

The mathematical definitions of Best and Worst are given as follows, i.e. ∀ s ∈ �:

Best(s)
def=

∑
X∈�,{s}�X

m(X) (7)

Worst(s)
def=

∑
X∈�,X�{s}

m(X) (8)

In sense of degradation processes, Best(s) can be understood as the quantification of
the belief that the degradation level is in the best case to be s, while Worst(s) can be
understood as the quantification of the belief that the degradation level is in the worst
case to be s. These two indicators Best and Worst can be seen as alternatives of p to
support the quantitative analysis on the states in � from the mass assignment m on �.

4.2. Transformation of operations

Let φ : A ⊗ B → C be a binary operation whereA,B ∈ FDS are the valuation domains
of the two input arguments and C ∈ FDS is the valuation domain of the output of φ.

When epistemic uncertainties are added to A and/or B, they can then propagate to
C through the operation φ. In order to formally define such propagation, we propose
four transformations of φ with respect to the four different places where uncertainties
can be added.

Definition 4.2: The left-transformation of φ is defined as follows:

φL : (A)u ⊗ B → (C)u

such that ∀ (X , y) ∈ (A)u ⊗ B,

φL(X , y) = {φ(x, y) | x ∈ X}. (9)

Definition 4.3: The right-transformation of φ is defined as follows:

φR : A ⊗ (B)u → (C)u

such that ∀ (x, Y) ∈ A ⊗ (B)u,

φR(x, Y) = {φ(x, y) | y ∈ Y}. (10)

The left- and right-transformations of φ define respectively the propagation of
uncertainties from A and B to C.



JOURNAL OF APPLIED NON-CLASSICAL LOGICS 15

Figure 5. The left- and right-transformations of the disjunction∨ and the conjunction∧.

Figure 5 shows graphically the left- and right-transformations of the disjunction ∨
and the conjunction ∧.

Definition 4.4: The inner-transformation of φ is defined as follows:

φu : (A)u ⊗ (B)u → (C)u

such that ∀ (X , Y) ∈ (A)u ⊗ (B)u,

φu(X , Y) = {φ(x, y) | x ∈ X , y ∈ Y} (11)

The inner-transformation φu can be seen as a composition of φL and φR.
Figure 6 shows graphically the inner-transformation of the logic disjunction ∨ and

conjunction ∧ operations. Comparing to Figure 5, the range of uncertain states in
Figure 6 is augmented since uncertainties are introduced to both of the two input
domains.
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Figure 6. The inner-transformation of the disjunction∨ and the conjunction∧.

Definition 4.5: The outer-transformation of φ is defined as follows:

φu : (A ⊗ B)u → (C)u

such that ∀ Z ∈ (A ⊗ B)u,

φu(Z) = {φ(x, y) | (x, y) ∈ Z} (12)

The outer-transformation is applied to the case where the uncertainties are directly
introduced to the composed state space A ⊗ B.

Proposition 4.6: ∀ A,B ∈ FDS, there exists a coherent abstraction αAB : (A ⊗ B)u →
(A)u ⊗ (B)u such that:

• ∀ Z ∈ (A ⊗ B)u, αAB(Z) = ({x | (x, y) ∈ Z}, {y | (x, y) ∈ Z})
• ∀ Z1, Z2 ∈ (A ⊗ B)u, Z1�Z2 ⇒ αAB(Z1)�αAB(Z2).

The proof of this proposition is given in Appendix.
The existence of αAB indicates that the abstraction level of (A)u ⊗ (B)u is, to some

extent, higher than (A ⊗ B)u.
Figure 7 pictures the coherent abstraction αAB : (WF ⊗ WF)u → (WF)u ⊗ (WF)u.

In this figure, we can see that the epistemic states outside of the grey rectangle are
one-to-one mapped from (WF ⊗ WF)u to (WF)u ⊗ (WF)u. The seven epistemic states
inside of the grey rectangle of (WF ⊗ WF)u are abstracted into only one epistemic
state ({W , F}, {W , F}) in (WF)u ⊗ (WF)u.

We can also prove that the resulted operations φL, φR, φu and φu are also abstrac-
tions of FDSs satisfying Definition 3.4. Therefore, the framework of FDSs is closed under
these four transformations (.)L, (.)R, (.)u and (.)u.

To summarise, Table 5 compares the FDMs in state space and in epistemic space by
comparing the formation of FDSs, operations and indicators.
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Figure 7. The coherent abstraction αWF : (WF ⊗ WF)u → (WF)u ⊗ (WF)u.

Table 5. Summary of FDMs in state space and in epistemic space.

State space Epistemic space
L : 〈�,�,⊥, p〉 (L)u : 〈�/≡,�,⊥u ,m〉

Set � � = 2�\{∅}
Element State s ∈ � Epistemic state X ⊆ �

Probability measure p(s): probability of being in s m(X): mass assignment of X
Degradation order� Partial order on� Partial order on�/≡ (pre-order on�)
Least element ⊥ ⊥u = {⊥}

φL : (A)u ⊗ B → (C)u

φR : A ⊗ (B)u → (C)u

Operations φ : A ⊗ B → C φu : (A)u ⊗ (B)u → (C)u

φu : (A ⊗ B)u → (C)u

αAB : (A ⊗ B)u → (A)u ⊗ (B)u

p : � → [0, 1] m : � → [0, 1]
Probabilistic indicators Best : � → [0, 1] Bel : � → [0, 1]

Worst : � → [0, 1] Pl : � → [0, 1]

5. Reinterpretation of FDMs

The reinterpretation of FDMs is proceeded as follows:

• First, transform the domain of the variables where uncertainties should be added
using the transformation (.)u in Definition 4.1.

• If probabilistic calculations are required, the mass assignment of each trans-
formed FDS should be assigned as input of the calculation.

• Depending on the places where FDSs are transformed, use appropriate transfor-
mation (i.e. left-, right-, inner- or outer-transformation) for each related operation
and declare it in the model.

In this section, we will use two cases as examples to explain the reinterpretation of
FDMs. The mode in Equation (1) in Section 2.1 will be used as the original model of the
two reinterpretations.
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5.1. Case 1

In this case, all the eight state variables (i.e. Pat, DB, MG, FF, SF, IED, Reg and CCTV) in
the model of Equation (1) are assumed to be epistemically uncertain, which is also the
case analysed in Misuri et al. (2018).

Following the above procedure, the reinterpreted model M1 is written as follows:

M1 :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Attack(OR) := ∨u(AG, AW)

Attack(XOR) := (�XOR)u(AG, AW)

AG := ∧u(UIG, Exp)

AW := ∧u(UIW , Exp)

UIG := ∧u(∧u(FSL, CCTV), SF)

UIW := ∧u(∧u(CCTV , SF), Doc)

Exp := ∧u(IED, Reg)

FSL := ∧u(∨u(MG, FF), Pat)

Doc := ∧u(Pat, DB)

(13)

In this case, M1 is interpreted as the following abstraction:

M1 : ((WF)u)8 → ((WF)u)9 (14)

5.2. Case 2

Instead of adding epistemic uncertainties to all variables, sometimes only part of them
need to be considered, such as components without monitoring devices or those
whose uncertainty may bring significant impacts.

In this case, we randomly choose two variables: Pat and Reg, to add epistemic uncer-
tainties while the other state variables remain certain. Following the same procedure,
the reinterpreted model M2 is written as follows:

M2 :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Attack(OR) := ∨u(AG, AW)

Attack(XOR) := (�XOR)u(AG, AW)

AG := ∧u(UIG, Exp)

AW := ∧u(UIW , Exp)

UIG := ∧L(∧L(FSL, CCTV), SF)

UIW := ∧R(∧(CCTV , SF), Doc)

Exp := ∧R(IED, (Reg)u)

FSL := ∧R(∨(MG, FF), (Pat)u)

Doc := ∧L((Pat)u, DB)

(15)

We can see that M2 contains both uncertain/certain components and operations.
Since the framework of FDSs is closed under the transformations to epistemic space,
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the interpretation of M2 is still an abstraction of FDSs, which is:

M2 : ((WF)u)2 ⊗ (WF)6 → ((WF)u)9 (16)

6. Assessment of FDMs and results

6.1. Scenarios and critical scenarios

The qualitative assessment of FDMs is proceeded by the scenarios analysis of given
observer(s) in the FDM.

An observer of M is a predicate w = Y, where w is a flow variable in M and Y is an
epistemic state in dom(w). The observer indicates the target variable and the target
epistemic state of the current scenarios analysis.

In this section, the observers for case 1 and 2 are selected as Attact(OR) = Y and
Attact(XOR) = Y , where Y ∈ {{W}, {W , F}, {F}}.

Definition 6.1: Given an observer w = Y, we define the set of scenarios satisfying
w = Y, denoted by Sce(w = Y), as follows:

Sce(w = Y)
def=
{

v

∣∣∣∣ v ∈
⊗
v∈S

dom(v),Mw(v) = Y

}
(17)

v is called a state vector or a scenario in
⊗

v∈S dom(v). Mw is the solution of w, i.e.
the partial abstraction ofM in Equation (3) such thatMw :

⊗
v∈S dom(v) → dom(w).

Definition 6.2: Given a set of scenarios Sce(w = Y), we define its set of minimal
scenarios and set of maximal scenarios, denoted respectively by MinSce(w = Y) and
MaxSce(w = Y), as follows:

MinSce(w = Y)
def= min(Sce(w = Y))

= {v ∈ Sce(w = Y) | �u ∈ Sce(w = Y), u�v}
MaxSce(w = Y)

def= max(Sce(w = Y))

= {v ∈ Sce(w = Y) | �u ∈ Sce(w = Y), v�u}.

(18)

It is easy to prove that the notion of minimal scenarios generalises the notion of min-
imal cutsets while the notion of maximal scenarios generalises the notion of minimal
path sets from FTA into FDSs.

For coherent systems, the minimal/maximal scenarios are the critical scenarios,
from which any improvement/degradation will immediately leads to the improve-
ment/degradation of the system’s state.

The calculation of scenarios and critical scenarios is implemented by means of deci-
sion diagrams. The algorithms can be found in our papers (Rauzy & Yang, 2019a;
Yang & Rauzy, 2019).

The calculation results for both case 1 and 2 are given in Table 6.
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Table 6. Numbers of scenarios and critical scenarios forM1 andM2.

M1 M2

Y {W} {W , F} {F} {W} {W , F} {F}
|Sce(Attack(OR) = Y)| 5729 813 19 548 21 7
|MinSce(Attack(OR) = Y)| 1 3 3 1 3 3
|MaxSce(Attack(OR) = Y)| 6 6 1 6 2 1
|Sce(Attack(XOR) = Y)| 5734 821 6 551 21 4
|MinSce(Attack(XOR) = Y)| 1 3 3 1 3 3
|MaxSce(Attack(XOR) = Y)| 1 7 2 1 2 2

For case 1, we list the maximal scenarios of the observer Attack(OR) = {W} and the
minimal scenarios of the observer Attack(OR) = {F} as follows:

MaxSce(Attack(OR) = {W}) = {({F}, {F}, {F}, {F}, {F}, {F}, {W}, {F}),

({F}, {F}, {F}, {F}, {F}, {W}, {F}, {F}),

({F}, {F}, {F}, {F}, {W}, {F}, {F}, {F}),

({F}, {F}, {F}, {W}, {F}, {F}, {F}, {F}),

({F}, {F}, {W}, {F}, {F}, {F}, {F}, {F}),

({W}, {W}, {F}, {F}, {F}, {F}, {F}, {W})}
MinSce(Attack(OR) = {F}) = {({W}, {W}, {F}, {F}, {F}, {F}, {F}, {F}),

({W}, {F}, {F}, {F}, {F}, {F}, {F}, {W}),

({F}, {W}, {F}, {F}, {F}, {F}, {F}, {W})}

The valuation ordering of the variables in the above (as well as the following) scenarios
is: (MG, FF, Pat, CCTV , SF, IED, Reg, DB).

MaxSce(Attack(OR) = {W}) and MinSce(Attack(OR) = {F}) are analogues of mini-
mal path sets and minimal cutsets. The maximal scenarios in the former can be used
to identify the most degraded situations that the system still remains in the certainly
working state {W} and the minimal scenarios in the latter can be used to identify the
least degraded situations that the system already enters into the certainly failed state
{F}.

As the solution MAttack(OR) is coherent, we can deduce that any degradation of
the scenarios in MinSce(Attack(OR) = {W}) will degrade the system’s state from {W}
to {W , F} and any improvement of the scenarios in MinSce(Attack(OR) = {F}) will
improve the system’s state from {F} to {W , F}.

It is also of interest to perform the analysis on the observer Attack(OR) = {W , F}. For
the sake of simplicity, Attack(OR) = {W , F} is denoted by u.

The critical scenarios of u for cases 1 and 2 (subscripted by 1 and 2) are listed as
follows:

MinSce(u)1 = {({W , F}, {W}, {W , F}, {W , F}, {W , F}, {W , F}, {W , F}, {W}),

({W}, {W , F}, {W , F}, {W , F}, {W , F}, {W , F}, {W , F}, {W}),

({W}, {W}, {W , F}, {W , F}, {W , F}, {W , F}, {W , F}, {W , F})}
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MaxSce(u)1 = {({F}, {F}, {W , F}, {F}, {F}, {F}, {F}, {F}),

({F}, {F}, {F}, {W , F}, {F}, {F}, {F}, {F}),

({F}, {F}, {F}, {F}, {W , F}, {F}, {F}, {F}),

({F}, {F}, {F}, {F}, {F}, {W , F}, {F}, {F}),

({F}, {F}, {F}, {F}, {F}, {F}, {W , F}, {F}),

({W , F}, {W , F}, {F}, {F}, {F}, {F}, {F}, {W , F})}
MinSce(u)2 = {(W , W , {W , F}, F, F, F, {W , F}, F),

(W , F, {W , F}, F, F, F, {W , F}, W),

(F, W , {W , F}, F, F, F, {W , F}, W)}
MaxSce(u)2 = {(F, F, {F}, F, F, F, {W , F}, F),

(F, F, {W , F}, F, F, F, {F}, F)}

We can see that the two scenarios in MaxSce(u)2 are included in MaxSce(u)1. The three
scenarios in MinSce(u)2 are more degraded than the three scenarios in MinSce(u)1.
These results show qualitatively that the range of uncertainties is enlarged fromM2 to
M1. This result is in accordance with the fact that we have more uncertain variables in
M1 than in M2. This enlargement can also be observed from the number of scenarios
and critical scenarios between M2 and M1 in Table 6.

It is worth emphasising here that although the case study used here is a Boolean
system, the proposed modelling approach can also be applied to multistate systems
that are modelled by multivalued operations other than ∨ and ∧.

6.2. Probabilistic indicators

To calculate the proposed indicators Bel, Pl, Best and Worst defined in Section 4.1.4,
we should first calculate the mass assignment in the domain of the target flow
variable w.

According to Definitions 3.1 and 3.4, the mass assignment m in the valuation
domain of any flow variable w of the model can be calculated as follows, i.e. ∀ Y ∈
dom(w):

m(Y)
def=

∑
v∈Sce(w=Y)

m(v) =
∑

v∈Sce(w=Y)

(
n∏

i=1

mi(Xi)

)
(19)

mi is the mass assignment in the domain of the ith state variable in
⊗

v∈S dom(v),
which should be given as input of the calculation.

Table 7 gives the mass assignments for the eight state variables in Equation (1),
which are extracted from Misuri et al. (2018). To support the calculation for case 2, we
also propose a compatible probability measure p on the state spaces of the eight state
variables in Table 8.

The calculation of Equation (19) relies on the results of the set of scenarios
Sce(w = Y). As mentioned in Section 6.1, the sets of scenarios are calculated by
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Table 7. Mass assignments on the epistemic space (WF)u of the eight state variables of the model in
Equation (1).

State variables MG FF Pat DB CCTV SF IED Reg

m({W}) 0.8 0.6 0.7 0.7 0.7 0.6 0.2 0.5
m({W , F}) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
m({F}) 0.1 0.3 0.2 0.2 0.2 0.3 0.7 0.4

Table 8. Compatible probabilitymeasure on the state spaceWFof the eight state variables of themodel
in Equation (1).

State variables MG FF Pat DB CCTV SF IED Reg

p(W) 0.85 0.65 0.75 0.75 0.75 0.65 0.25 0.55
p(F) 0.15 0.35 0.25 0.25 0.25 0.35 0.75 0.45

Table 9. Results of Bel, Pl, Best andWorst of the observers Attack(OR) = Y and Attack(XOR) = Y for
case 1 and 2.

M1 M2

Attack(OR) Attack(XOR) Attack(OR) Attack(XOR)

m({W}) 9.904 × 10−1 9.906 × 10−1 9.942 × 10−1 9.948 × 10−1

m({W , F}) 7.895 × 10−3 8.12 × 10−3 2.69 × 10−3 2.69 × 10−3

m({F}) 1.667 × 10−3 1.193 × 10−3 3.075 × 10−3 2.487 × 10−3

Bel({W}) 9.904 × 10−1 9.906 × 10−1 9.942 × 10−1 9.948 × 10−1

Bel({W , F}) 1.000 1.000 1.000 1.000
Bel({F}) 1.667 × 10−3 1.193 × 10−3 3.075 × 10−3 2.487 × 10−3

Pl({W}) 9.983 × 10−1 9.987 × 10−1 9.969 × 10−1 9.975 × 10−1

Pl({W , F}) 1.000 1.000 1.000 1.000
Pl({F}) 9.562 × 10−3 9.313 × 10−3 5.765 × 10−3 5.177 × 10−3

Best(W) 1.000 1.000 1.000 1.000
Best(F) 1.667 × 10−3 1.193 × 10−3 3.075 × 10−3 2.487 × 10−3

Worst(W) 9.904 × 10−1 9.906 × 10−1 9.942 × 10−1 9.948 × 10−1

Worst(F) 1.000 1.000 1.000 1.000

means of decision diagrams. The calculation algorithms can be found in Yang
and Rauzy (2019).

Once the mass assignment is obtained, the four indicators Bel, Pl, Best and Worst
can be calculated according to the formulas defined in Section 4.1.4.

The results of the mass assignment in the domain of the two flow variables
Attack(OR) and Attack(XOR) for both case 1 and 2 are given in Table 9. These results
are in accordance with those calculated in Misuri et al. (2018). The results of the four
indicators Bel, Pl, Best and Worst are also given in Table 9.

To be more comparative, we picture the mass assignment of Attack(OR) and
Attack(XOR) in Figure 8. From this figure, we can clearly see the enlargement of range
of uncertainties from M2 to M1.

7. Conclusion

In this article, we present a new approach of modelling epistemic uncertainties
in degradation processes. This approach is established in the framework of finite
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Figure 8. The mass assignment in the domain of Attack(OR) and Attack(XOR) for cases 1 and 2.

degradation structures (FDSs), which is recently proposed by the authors and can be
seen as a formal extension of the fault tree analysis into multistate systems.

In the framework of FDSs, the state spaces of components are modelled by FDSs and
the failure mechanisms of the system are modelled by operations on FDSs. When the
states of components become epistemically uncertain, we transform their correspond-
ing FDSs into epistemic space using the unary operation (.)u and transform related
operations using the left-, right-, inner- and outer transformations. These transforma-
tions are mathematically defined and can be done automatically for all FDSs and for
all operations on FDSs. Compared to the manual adaptations used in the state-of-the-
art literature, these automatic transformations are more efficient, less error-prone and
more generic. Moreover, both uncertain and certain components and operations can
be modelled and assessed uniformly in one finite degradation model since we have
proven that the framework of FDSs is closed under the proposed transformations.
As assessment results, the uncertainty-embedded (critical) scenarios and probabilis-
tic indicators such as belief, plausibility, Best and Worst can be calculated to support
the required reliability and safety analysis.
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Appendix. Proofs

Proof: First, we prove that αAB is surjective.
∀ (X , Y) ∈ (A)u ⊗ (B)u, we define that Z = {(x, y) | x ∈ X , y ∈ Y}. It is obvious that Z ⊆ A ⊗

B so that Z ∈ (A ⊗ B)u. By definition, we have αAB(Z) = (X , Y), which implicates that αAB is
surjective.

Second, we prove that αAB is monotone.
∀ X , Y ∈ (A ⊗ B)u, if X�Y , according to Definition 4.1, we have

X�Y ⇔
{ ∀ (a, b) ∈ X , ∃(c, d) ∈ Ys.t.a�c, b�d

∀ (c, d) ∈ Y , ∃(a, b) ∈ Xs.t.a�c, b�d.

Let R1 = {x | (x, y) ∈ X}, R2 = {y | (x, y) ∈ X}, R3 = {x | (x, y) ∈ Y}, R4 = {y | (x, y) ∈ Y}. Then, we
can decompose the above propositions as follows:

X�Y ⇔

⎧⎪⎨
⎪⎩

∀ a ∈ R1, ∃c ∈ R3, a�c
∀ c ∈ R3, ∃a ∈ R1, a�c
∀ b ∈ R2, ∃d ∈ R4, b�d
∀ d ∈ R4, ∃b ∈ R2, b�d

⇔
{

R1�R3
R2�R4.

According to the definition of αAB , we have αAB(X) = (R1, R2) and αAB(Y) = (R3, R4),
(R1, R2), (R3, R4) ∈ (A)u ⊗ (B)u. Together with R1�R3 and R2�R4, we can deduce that
αAB(X)�αAB(Y), i.e. αAB is monotone. �

https://doi.org/10.1109/TR.2015.2404891

	1. Introduction
	2. Illustrative case study
	2.1. System description
	2.2. Incomplete knowledge on states
	2.3. Problems in modelling epistemically uncertain states

	3. Finite degradation structures
	3.1. Formal definition
	3.2. Operations
	3.3. Finite degradation models

	4. Automatic transformations of FDMs into epistemic space
	4.1. Transformation of FDSs
	4.1.1. Formal definition
	4.1.2. Degradation orders among epistemic states
	4.1.3. Mass assignment
	4.1.4. Probabilistic risk indicators

	4.2. Transformation of operations

	5. Reinterpretation of FDMs
	5.1. Case 1
	5.2. Case 2

	6. Assessment of FDMs and results
	6.1. Scenarios and critical scenarios
	6.2. Probabilistic indicators

	7. Conclusion
	ORCID
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [493.483 703.304]
>> setpagedevice


