
Norwegian University of Science and Technology

Sherlock: a Primitive Solver for
Numerical Constraint Satisfaction Problems

Antoine Rauzy
Department of Mechanical and Industrial Engineering
S. P. Andersens veg 3, Valgrinda*3.306
Antoine.Rauzy@ntnu.no

Norwegian University of Science and Technology

Licenses & versions

2

The present document is distributed under Creative Common
License CC-BY-ND.

Sherlock is free software distributed by the AltaRica Association under GNU
GPLv3 license.

Version 1.0.0

Date 07/01/2019

Norwegian University of Science and Technology

Agenda

• Introduction

• Constraint Satisfaction Problems

• Combinatorial Optimization

• References

Appendix

• Grammar

• Known bugs

3

Norwegian University of Science and Technology

INTRODUCTION

4

Norwegian University of Science and Technology

Rational

Sherlock is a primitive solver for numerical constraint satisfaction problems, i.e.
problems in which variables take their values into sets or ranges of integers.

This presentation specifies the input language of Sherlock and presents the algorithms
implemented by the tool.

Sherlock is developed in Python, for pedagogical purposes only. Its efficiency is by
orders of magnitude worse than those of available commercial tools.

The objective is to familiarize students with constraint satisfaction problems as a
modeling language.

5

Norwegian University of Science and Technology

Installing and Running Sherlock

To install Sherlock you just need to decompress the archive "Sherlock1.0.0.zip" into
local directory. Source files are the Python file "Sherlock.py" as well as the directory
"src" and its content.

To run Sherlock you have to open the file Python file "Sherlock.py" into your Python
environment, set up the names of input file, problem, algorithm and output file and
run it.

6

Norwegian University of Science and Technology

Organization of this Document

The remainder of this document is organized as follows.

• Section Constraint Satisfaction Problems describes Sherlock models for this class of
problems as well as algorithms implemented in the tool to solve them. It provides
also a list of exercises (solutions can be found in the folder examples).

• Section Combinatorial Optimization describes Sherlock models for this class of
problems as well as algorithms implemented in the tool to solve them. It provides
also a list of exercises (solutions can be found in the folder examples).

• Appendix Grammar gives the Backus-Naur Form of Sherlock's Grammar.

• Appendix Known bugs reports know problems with the current version of Sherlock

7

Norwegian University of Science and Technology

CONSTRAINT SATISFACTION PROBLEMS

8

Norwegian University of Science and Technology

Formal Definition

A constraint satisfaction problem is a pair (V, C) where:

• V is a finite set of variables. Each variable v  V takes its value in (small) finite set
of constants (Boolean, symbols, integers) called the domain of v and denoted by
dom(v).

• C is a finite set of constraints on variables of V. Each constraint c  C applies to a
subset {v1, v2,…, vk} of V. It describes which k-tuples of values are admissible: c 
dom(v1) ´ dom(v2) ´ … ´ dom(vk).

The k-tuples of a constraint can be given explicitly (by enumerating them) or implicitly
(e.g. by means of an equation, as in the case study).

A variable assignment in a function from variables of V to their domains. An
assignment is a solution of (V, C) if it satisfies all of the constraints of C.

9

Norwegian University of Science and Technology

Sherlock Models: Domain Declarations

A Sherlock model for a constraint satisfaction problem consists in a number of domain
declaration and problem declarations.

A domain declaration associates a name to a domain.

Domains of variables can be either sets of integers, e.g. {2, 4, 6}, or ranges of integers,
e.g. [1, 4]. Ranges of integers are internally expanded into sets, e.g. the range [1, 4] is
expanded into the set {1, 2, 3, 4}. E.g.

domain Color [1, 3]

domain Color {1, 2, 3}

Domains can be given a name and subsequently reused to declare variable. A named
domain must be declared before to be used in a variable declaration.

10

Norwegian University of Science and Technology

Sherlock Models: Problem Declarations

A problem declaration associates a name to a problem and describes this problem.
It is made of two successive parts:
1. The declaration variables themselves together with their domains.
2. The description of constraints applying on these variables

problem Map5

Color R1, R2, R3, R4, R5;

constraint

alldifferent R1, R2;

alldifferent R1, R3;

alldifferent R1, R4;

alldifferent R2, R3;

alldifferent R2, R4;

alldifferent R2, R5;

alldifferent R3, R4;

alldifferent R3, R5;

alldifferent R4, R5;

end

11

− The declaration of a problem starts with the
keyword "problem'' followed by the name of the
model.

− Then come variable declarations.

− A variable declaration consists of the domain of the
variable followed by the names of the variables
separated with commas "," and ending with a
semicolon ";".

− Constraints come after the keyword "constraint".

− Here all constraints are of type "alldifferent".

− The declaration finishes with the keyword "end".

Norwegian University of Science and Technology

Example: the Map5 Problem

12

R1
R2 R3

R4

R5
Consider the 5 regions map on the right.
Is there a way to color each of the region of this map with k
colors so that two adjacent regions are not colored the same?
If k=5, the response is obviously positive. But with k=4 or k=3?

domain Color [1, 3]

problem Map5

Color R1, R2, R3, R4, R5;

constraint

alldifferent R1, R2;

alldifferent R1, R3;

alldifferent R1, R4;

alldifferent R2, R3;

alldifferent R2, R4;

alldifferent R2, R5;

alldifferent R3, R4;

alldifferent R3, R5;

alldifferent R4, R5;

end

Norwegian University of Science and Technology

Sherlock Models: Available Constraints

The current version of Sherlock provides 3 types of constraints:

• Alldifferent constraints: the given variables must take different values.

alldifferent V1, V2, V3, V4;

• Clauses: at least one of literals must be verified:

or V1!=1, V2!=1, V3==0;

Literals in the form V  c , where V is a variable,  is ==, !=, <, >, <= or >=, and c
is an integer

• Linear inequalities:

2*V1 – V2 – 3*V3 + V4 == 4;

13

Norwegian University of Science and Technology

Algorithm "Generate and Test"

14

There exists a quite simple algorithm to solve any constraint satisfaction problem: it
consists in generating one by one all possible variable assignments and to test them
until a solution is found.

GenerateAndTest(V, C):
GenerateAndTest(, V, C)

GenerateAndTest(s, V, C):
if s gives a value to all variables of V:

if s satisfies all constraints of C:
exit with s

else:
select a variable v in V not assigned in s
forall constant c in dom(v):

GenerateAndTest(s  [v  c], V, C)

Norwegian University of Science and Technology

Algorithm "FindOneSolution"

15

FindOneSolution(s, V, C):

if s falsifies one of the constraints of C:

return None

else if s satisfies all constraints of C:

return s

else:

select a variable v in V not assigned in s and a value c in dom(v)

s’  Propagate(s|[dom(v)  {c}], V, C)

result  FindOneSolution(s’, V, C)

if result=None:

s’’  Propagate(s|[dom(v)  dom(v)\{c}], V, C)

result  FindOneSolution(s’’, V, C)

return result

Removes the value c
from dom(v) and
propagate

Assigns the value c
to v and propagate

Norwegian University of Science and Technology

Algorithm "FindAllSolutions"

16

FindAllSolutions(s, V, C):

if s falsifies one of the constraints of C:

return

else if s satisfies all constraints of C:

if O(s) is better than the best solution found so far:

best solution  s

else:

select a variable v in V not assigned in s and a value c in dom(v)

s’  Propagate(s|[dom(v)  {c}], V, C)

FindAllSolutions(s’, V, C)

s’’  Propagate(s|[dom(v)  dom(v)\{c}], V, C)

FindAllSolutions(s’’, V, C)

Norwegian University of Science and Technology

Exercises: 4 Colors Problems

Exercise: [Map10] The following map has colored in 5 colors.

Exercise: [Paris] Same question with the districts of Paris.

17

1. Write a model to show that it can be colored in 4
colors.
2. Assess this model with the algorithms
GenerateAndTest, FindOneSolution and
FindAllSolutions. How running times compare?

R1
R2

R3

R4

R5

R6

R7 R8

R9

R10

Norwegian University of Science and Technology

Exercises: Cryptarithmetic

Exercise: [Money] Write the model to find values for letters (in [0, 9]) so that the
following addition works:

𝑆𝐸𝑁𝐷 +𝑀𝑂𝑅𝐸 = 𝑀𝑂𝑁𝐸𝑌

Exercise: [Donald] Same question with the following addition.

𝐷𝑂𝑁𝐴𝐿𝐷 + 𝐺𝐸𝑅𝐴𝐿𝐷 = 𝑅𝑂𝐵𝐸𝑅𝑇

18

Norwegian University of Science and Technology

Exercises: N-Queens Problems

Exercise: [8-Queens] Write the model to show that it is possible to place 8 queens on
chessboard so that no two queens are "en prise".

Exercise: [k-Queens] Same questions with k queens on a k x k chess board, with k = 4,
5, 6, 7, 9…

19

Norwegian University of Science and Technology

Exercises: Puzzle

Exercise: [Zebra] The following version of the puzzle appeared in Life International in 1962 (source Wikipedia):

− There are five houses.

− The Englishman lives in the red house.

− The Spaniard owns the dog.

− Coffee is drunk in the green house.

− The Ukrainian drinks tea.

− The green house is immediately to the right of the ivory house.

− The Old Gold smoker owns snails.

− Kools are smoked in the yellow house.

− Milk is drunk in the middle house.

− The Norwegian lives in the first house.

− The man who smokes Chesterfields lives in the house next to the man with the fox.

− Kools are smoked in the house next to the house where the horse is kept.

− The Lucky Strike smoker drinks orange juice.

− The Japanese smokes Parliaments.

− The Norwegian lives next to the blue house.

Now, who drinks water? Who owns the zebra? Design a model to answer these questions.

In the interest of clarity, it must be added that each of the five houses is painted a different color, and their inhabitants are of
different national extractions, own different pets, drink different beverages and smoke different brands of American cigarettes.
One other thing: in statement 6, right means your right.

20

Norwegian University of Science and Technology

Exercises: Mathematical Numbers

Exercise: [Schur's Lemma] The problem consists in determining whether it is possible
to put n balls numbered 1, 2,…, n into 3 boxes in such a way that:

• If the ball x is in a box, then the ball 2x is not in the same box.

• If the balls x and y are in a box, then the ball x+y is not in the same box.

Hint: The problem has solutions for n  13 and no solution beyond.

21

131 2

3
4

5

6

7
8

9

10
11

12

Norwegian University of Science and Technology

Exercises: Mathematical Numbers

Exercise: [Ramsey problem] Color the edges of a complete graph with n nodes using
at most k colors, in such a way that there is no monochromatic triangle in the graph,
i.e. in any triangle at most two edges have the same color. With 3 colors, the problem
has a solution if n < 17.

Design a model to show this result (and that a complete graph with 16 nodes can be
colored so to fulfil the constraint).

22

Norwegian University of Science and Technology

Exercises: Sudoku

23

Exercise: [Sudoku] Design a model to solve the following Sudoku grid.

2 1

5 8

8 5 7 4

2 5 6 4

3 4 2 7

6 9 7 1

2 9 7 1

7 6

8 4

Exercise: Same exercise with your own Sudoku grid.

Norwegian University of Science and Technology

Exercises: a Matching Problem*

24

Exercise: [Matching] design a model so to assign four suppliers S1, S2, S3, S4 to four
parts such that each supplier provides on one part and each part is produced by one
supplier.
Effectiveness of production is given by the following table (e.g., supplier S1 produces
part P1 with effectiveness 7). The total effectiveness must be 19 at least.

P1 P2 P3 P4

S1 7 1 3 4

S2 8 2 5 1

S3 4 3 7 2

S4 3 1 6 3

(*) This exercise is borrowed from Hana Rudová “Constraint Programming and Scheduling -- Materials from
the course taught at HTWG Constanz, Germany”

Norwegian University of Science and Technology

Exercises: Planning

Exercise: [Koenigsberg] The great Swiss mathematician Leonhard Euler (1707-1783)
has been asked to find a promenade (actually a parad) through the different districts
of the city of Königsberg that would go through all of the bridges of the city, but that
would not go twice by any bridge.

1. Design a model to show that there is no such promenade.

2. Design a model to find a parade that goes through each district, possibly not taking
all the bridges.

25

Norwegian University of Science and Technology

Exercises: Planning

26

Coffee
shop

Sam's
Office

Mail
room

Lab.

Exercise: [LilleRob] Rob is a small robot which hangs around in Sam's institute (see
floor map below). Usually, Rob is gently sleeping in the laboratory. But it can also
deliver the coffee and the mail to Sam. Not at the same time however: Rob is too
small to carry both the coffee and the mail.

Rob can thus perform 6 actions:
• Move clockwise from one room to the next one.
• Move counter clockwise from one room to the

next one.
• Pick-up the coffee at the coffee shop.
• Deliver the coffee at Sam's office.
• Pick-up the mail in the mail room.
• Deliver the mail at Sam's office.

Design a model to tell Rob the sequence of actions it must perform to deliver the
coffee and the mail to Sam, starting from the lab. and going back to the lab. when
its job is achieved.

Norwegian University of Science and Technology

Exercises: Project Management

27

Exercise: [Project12] A project is made of 12 tasks labelled from A to L, with the
following duration (in days) and precedence constraints (a task X precedes another
task Y, if X must be completed before Y starts).

Task Duration Precedence

A 3

B 1 A

C 5 A

D 6 B

E 4 B

F 2 C, D, I

Design a model to determine in how many days are required to complete the project.

Task Duration Precedence

G 9 E, F

H 5

I 8 H

J 2 H

K 3 I

L 7 J, K

Norwegian University of Science and Technology

Exercises: Rostering Problems

Exercise: [Rostering55] You need to organize the shifts of the 5 employees (Adna,
Bekka, Carsten, Dina and Egil) of your service over the 5 working days of a week. There
are 3 shifts every day: morning, afternoon and night. Constraints are as follows.

− 2 employees are required for morning and afternoon shifts, 1 for night shifts.

− Each employee must take at least one morning shift, one afternoon shift and one
night shift.

− Employees cannot work less than 4 shifts and more than 6 shifts a week.

− An employee cannot work two consecutive shifts

− When he takes an afternoon shift, Egil is trained by either Bekka or Carsten.

− Adna and Dina should not work more than Bekka.

Design a model to find an acceptable rostering.

28

Norwegian University of Science and Technology

COMBINATORIAL OPTIMIZATION

29

Norwegian University of Science and Technology

Formal Definition

A combinatorial optimization problem is a triple (V, C, O) where:

• (V,C) is a constraint satisfaction problem, i.e.

– V is a finite set of variables. Each variable v  V takes its value in (small) finite
set of constants (Boolean, symbols, integers) called the domain of v and
denoted by dom(v).

– C is a finite set of constraints on variables of V. Each constraint c  C applies to
a subset {v1, v2,…, vk} of V. It describes which k-tuples of values are admissible:
c  dom(v1) ´ dom(v2) ´ … ´ dom(vk).

• O is an objective function, i.e. either:

– maximize f(V) for a certain function f of the variables

– minimize f(V) for a certain function f of the variables

30

Norwegian University of Science and Technology

Objective Functions

An optimization problem is just a constraint satisfaction problem with an objective
function. Objective functions are introduced by one of the keyword "minimize" or
"maximize" (with their obvious meaning). They consists in linear polynomials of the
variables of the problem.

31

domain Color [1, 4]

problem Map5

Color R1, R2, R3, R4, R5;

constraint

alldifferent R1, R2;

alldifferent R1, R3;

alldifferent R1, R4;

alldifferent R2, R3;

alldifferent R2, R4;

alldifferent R2, R5;

alldifferent R3, R4;

alldifferent R3, R5;

alldifferent R4, R5;

minimize 2*R2 + R4 – 3*R5;

end

Norwegian University of Science and Technology

Algorithm "FindBestSolution"

32

FindBestSolution(s, V, C, O):

if s falsifies one of the constraints of C:

return

else if s satisfies all constraints of C:

if O(s) is better than the best solution found so far:

best solution  s

else:

select a variable v in V not assigned in s and a value c in dom(v)

s’  Propagate(s|[dom(v)  {c}], V, C)

FindBestSolution(s’, V, C)

s’’  Propagate(s|[dom(v)  dom(v)\{c}], V, C)

FindBestSolution(s’’, V, C)

Norwegian University of Science and Technology

Algorithm "BranchAndBound"

33

BranchAndBound(s, V, C, O):

if s falsifies one of the constraints of C:

return

else if s satisfies all constraints of C:

if O(s) is better than the cost of the best solution found so far:

best solution  s

else if O(s) can still be better than the cost of the best solution found so far:

select a variable v in V not assigned in s and a value c in dom(v)

s’  Propagate(s|[dom(v)  {c}], V, C)

BranchAndBound(s’, V, C)

s’’  Propagate(s|[dom(v)  dom(v)\{c}], V, C)

BranchAndBound(s’’, V, C)

Norwegian University of Science and Technology

Exercises: Production Planning*

Exercise: [ProductionPlanning] A firm produces products P1, P2 and P3

− To produce 1 unit of product P1, the firm uses 3 kg of raw material.

− To produce 1 unit of product P2, the firm uses 2 kg of raw material and 1 unit of
product P1.

− To produce 1 unit of product P3, the firm uses 2 kg of raw material, 2 units of
product P1 and 1 unit of product P2.

− There are 1000 kg of raw material available.

Products P1 and P2 that are used as semi-finished products can also be sold
themselves.

− Prices of products P1, P2 and P3 are respectively 5, 10 and 30€.

The objective is to maximize total revenues from products sold.

Design a model to reach this objective.

(*) Borrowed to Jan Fàbri

34

Norwegian University of Science and Technology

Exercises: Cutting Stock Problem*

Exercise: [CuttingStock] Airm produces garden laths fence. There are only standard
laths of 200 cm long at disposal at storehouse.

To produce a fence, the firm needs exactly 12 laths 80 cm long, 31 laths 50 cm long
and 21 laths 30 cm long.

You have to design a cutting plan to minimize total amount of laths 200 cm long.

You can assume that the cutting width is null.

(*) Borrowed to Jan Fàbri

35

Norwegian University of Science and Technology

Exercises: Knapsack Problem*

Exercise: [Knapsack] There are 5 projects characterized by the investment cost and
return. The budget 50 000 € is available to select such projects that assure the highest
total return.

Design a model to propose the best investment.

(*) Borrowed to Jan Fàbri

36

P1 P2 P3 P4 P5

Cost 12 000 10 000 15 000 18 000 16 000

Return 20 000 18 000 22 000 26 000 21 000

Norwegian University of Science and Technology

Exercises: Perfect Matching* (1)

Exercise: [Perfect Matching] Ten students go for a school trip. To assign them to
double rooms, they are asked to express their preferences (see the table, 0-min,

10-max). For i < j , the value cij is the preference value expressing how much student i
wants to be in the room with student j , for i > j , the value cij is the preference value
expressing how much student j wants to be in the room with student i.

Design a model so to assign students to rooms in order to maximize global happiness
of the group.

(*) Borrowed to Jan Fàbri

37

Norwegian University of Science and Technology

Exercises: Perfect Matching (2)

1 2 3 4 5 6 7 8 9 10

1 7 6 2 4 7 4 1 8 3

2 1 3 1 10 5 2 9 4 2

3 10 1 5 6 1 8 2 7 4

4 1 8 4 10 7 5 4 2 7

5 8 7 3 5 2 1 5 2 9

6 2 2 3 7 8 8 2 1 5

7 1 7 6 1 7 7 8 1 5

8 6 8 1 1 10 8 1 4 7

9 4 1 2 2 8 1 7 5 2

10 1 5 4 3 9 7 1 4 6

38

Norwegian University of Science and Technology

Bottleneck Assignment*

Exercise: [BottleneckAssignment] A project consists of 5 independent parts. In the
company, 5 departments can manage the parts individually. Historical data shows
average times (in days) departments finished similar tasks (see the table below). N.A.
represents the fact a department did not work on such task in the past. The company
wants to finish the whole project as soon as possible.

Design a model to help the company to com

(*) Borrowed to Jan Fàbri

39

Time Part1 Part2 Part3 Part4 Part5

Dept1 25 15 N.A. 17 25

Dept2 22 N.A. 22 20 22

Dept3 20 18 25 16 23

Dept4 N.A. 20 30 21 28

Dept5 27 19 27 18 N.A.

Norwegian University of Science and Technology

Quadratic Assignment*

Exercise: [QuadraticAssignment] A company intends to establish 5 warehouses in 5
cities. In the first table below, distances (in km) between cities are given. The second

table shows a number of necessary travels between warehouses within 1 month.

Design a model to help the company to allocate the warehouses so to minimize total
travelling cost.

40

Dist. City1 City2 City3 City4 City5

City1 0 50 60 130 100

City2 50 0 70 150 120

City3 60 70 0 80 40

City4 130 150 80 0 50

City5 100 120 40 50 0

Travels WH1 WH2 WH3 WH4 WH5

WH1 0 10 15 12 8

WH2 9 0 18 16 10

WH3 20 8 0 10 12

WH4 10 15 11 0 22

WH5 17 12 9 11 0

Norwegian University of Science and Technology

REFERENCES

41

Norwegian University of Science and Technology

References

Reference books on constraints:

There exists a vast scientific and technical literature on constraint. Some historical refrences:

Edward Tsang. Foundations of Constraint Satisfaction. Academic Press Inc (août 1993). ISBN-10: 0127016104.
ISBN-13: 978-0127016108

Rina Dechter. Constraint Processing. The Morgan Kaufmann Series in Artificial Intelligence. May 19, 2003. ISBN-
10: 1558608907. ISBN-13: 978-1558608900.

Francesca Rossi, Peter Van Beek, Toby Walsh (editors): Handbook of Constraint Programming, Elsevier, 2006

http://www.csplib.org/Problems

References on satisfiability modulo theories:

Daniel Kroening and Ofer Strichman Decision. Procedures : An Algorithmic Point of View. Springer-Verlag Berlin
and Heidelberg GmbH & Co. K; 2nd ed. 2016. Texts in Theoretical Computer Science. An EATCS Series ISBN-13:
978-3662504963. 2017

http://smtlib.cs.uiowa.edu/

References on combinatorial optimization:

Bernhard Korte and Jens Vygen. Combinatorial Optimization: Theory and Algorithms. Springer-Verlag Berlin and
Heidelberg GmbH & Co. K; Édition : 6th ed. Algorithms and Combinatorics. ISBN-13: 978-3662560389. 2018

Christos H. Papadimitriou and Kenneth Steiglitz. Combinatorial Optimization: Algorithms and Complexity. Dover
Publications Inc.; Dover Books on Computer Science. ISBN-13: 978-0486402581. 1998.

42

Norwegian University of Science and Technology

APPENDIX

43

Norwegian University of Science and Technology

GRAMMAR

44

Norwegian University of Science and Technology

Models

Model ::= (DomainDeclaration | Problem)*

DomainDeclaration ::= domain Identifier (Set | Range)

Set ::= "{" Integer ("," Integer)* "}"

Range ::= "[" Integer "," Integer "]"

Domain ::= Set | Range | Identifier

Problem ::=

problem Identifier

VariableDeclaration*

ConstraintClause?

ObjectiveFunction?

end

VariableDeclaration ::= Domain Identifier ("," Identifier)* ";"

ConstraintClause ::= constraint Constraint+

45

Norwegian University of Science and Technology

Constraints

Constraint ::= AllDifferent | Inequality | Clause

AllDifferent ::= alldifferent Variable ("," Variable)* ";"

Inequality ::= Polynomial Comparator Integer ";"

Polynomial ::= Monomial (("+" Monomial) | ("-" UnsignedMonomial))*

Monomial ::= "-"? UnsignedMonomial

UnsignedMonomial ::= UnsignedInteger "*" Variable | Variable

Clause ::= or Literal ("," Literal)* ";"

Literal ::= Variable Comparator Integer

Comparator ::= "==" | "!=" | "<" | ">" | "<=" | ">="

Variable ::= Identifier

Identifier ::= [a-zA-Z][a-zA-Z0-9_]+

Integer ::= "-"? UnsignedInteger

UnsignedInteger ::= [0-9]+

46

Norwegian University of Science and Technology

Objective Functions and Comments

ObjectiveFunction ::= (minimize | maximize) Polynomial ";"

Comments can be added everywhere in the code.

• Single line comments introduced by //, which comment out the rest of the line.

• Multiline comments which comment out the text between /* and */.

47

Norwegian University of Science and Technology

KNOWN BUGS

48

Norwegian University of Science and Technology

Known bugs

• It is not possible to have more than one occurrence of a variable in a polynomial
(both for inequalities and objective functions).

• It is not possible to give a null coefficient to a variable in a polynomial

49

